




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省信阳市城关镇群力中学2021-2022学年高二数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在正四棱柱中,,,设四棱柱的外接球的球心为
,动点在正方形的边上,射线交球的表面于点.现点从点出发,
沿着运动一次,则点经过的路径长为(
)A.
B.
C.
D.参考答案:A2.已知f(x)=x2-cosx,x∈[-1,1],则导函数f′(x)是()A.仅有最小值的奇函数B.既有最大值,又有最小值的偶函数C.仅有最大值的偶函数D.既有最大值,又有最小值的奇函数参考答案:D略3.下面图形中是正方体展开图的是(
)
参考答案:A4.若命题“¬p”与命题“p∨q”都是真命题,那么(
)A.命题p与命题q的真值相同 B.命题p一定是真命题C.命题q不一定是真命题 D.命题q一定是真命题参考答案:D【考点】命题的真假判断与应用.【专题】阅读型.【分析】根据命题和其否定真假性相反,判定出p的真假,结合“或”命题真假确定q的真假.对照选项即可.【解答】解:命题¬p是真命题,则p是假命题.又命题pvq是真命题,所以必有q是真命题.故选D.【点评】本题考查复合命题真假性的判定及应用.复合命题真假一般转化成基本命题的真假.5.若函数在其定义域的一个子区间内不是单调函数,则实数的取值范围是(
)A.B.C.D.参考答案:D略6.各项均为实数的等比数列中,,,则
(A)
(B)(C)
(D)参考答案:A7.已知二次函数的导函数为,,f(x)与x轴恰有一个交点,则的最小值为( ) A.2
B.
C.3
D.参考答案:A8.表面积为4π的球O放置在棱长为4的正方体ABCD-A1B1C1D1上,且与上表面A1B1C1D1相切,球心在正方体上表面的射影恰为该表面的中心,则四棱锥O-ABCD的外接球的半径为(
)A. B. C. D.参考答案:B【分析】先求出球O的半径长为1,可得出四棱锥O-ABCD的高为5,且底面正方形ABCD外接圆的半径为,并设四棱锥O-ABCD的外接球的半径为R,可得出,从而解可计算出四棱锥O-ABCD的外接球的半径.【详解】由题可得四棱锥O-ABCD为正四棱锥,因为球O的表面积为,所以球O的半径为1,所以正四棱锥O-ABCD的高为5,底面正方形的对角线长为,设四棱锥O-ABCD的外接球的半径为R,则,解得.故选:B.【点睛】本题考查四棱锥外接球的半径,解题时要充分分析几何体的结构,确定球心的位置,由此列方程求解,考查空间想象能力与计算能力,属于中等题.9.在棱长为1的正方体ABCD—中,若点P是棱上一点,则满足+的点P的个数为(
)ks5u4
6
8
12参考答案:B略10.集合,.若集合,则b应满足(
)A.或 B.C.或 D.参考答案:A【分析】先化简集合,再由,转化为直线与曲线无交点,结合图像,即可求出结果.【详解】由题意可得,因为,由可得:直线与曲线无交点,由得或,作出曲线的图像如下:由图像易知,当直线恰好过时,恰好无交点;因此时,满足题意;综上或.故选A【点睛】本题主要考查根据直线与圆位置关系求参数的范围,熟记直线与圆的位置关系即可,属于常考题型.二、填空题:本大题共7小题,每小题4分,共28分11.已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5),则
与的夹角为
▲
参考答案:12.已知数列{an}的前n项和为Sn,a1=2且Sn=(n+1)an+1,则an=
.参考答案:【考点】数列递推式.【分析】a1=2且Sn=(n+1)an+1,n≥2时,Sn﹣1=nan,可得:an+1=an.即可得出.【解答】解:a1=2且Sn=(n+1)an+1,n≥2时,Sn﹣1=nan,可得:Sn﹣Sn﹣1=nan,可得:an=(n+1)an+1﹣nan,∴an+1=an.∴an=.故答案为:.13.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的高为
.参考答案:【考点】旋转体(圆柱、圆锥、圆台).【专题】转化思想;转化法;空间位置关系与距离.【分析】通过侧面展开图的面积,求出圆锥的母线长与底面圆的半径,即可求出圆锥的高.【解答】解:由题意一个圆锥的侧面展开图是面积为2π的半圆面,因为4π=πl2,所以母线长为l=2,又半圆的弧长为2π,圆锥的底面的周长为2πr=2π,所以底面圆半径为r=1,所以该圆锥的高为h===.故答案为:.【点评】本题考查了圆锥体的侧面展开图的应用问题,也考查了空间想象能力与计算能力的应用问题,是基础题目.14.设复数z满足i(z+1)=-3+2i,则z的实部是________.参考答案:1略15.在△ABC中,内角A,B,C所对的边分别为a,b,c,其中A=120°,b=1,且△ABC的面积为,则=
.参考答案:2【考点】正弦定理.【专题】计算题;转化思想;分析法;解三角形.【分析】先利用面积公式,求出边a=4,再利用正弦定理求解比值.【解答】解:由题意,=×c×1×sin120°∴c=4,∴a2=b2+c2﹣2bccosA=1+16﹣2×1×4×(﹣)=21.∴a=∴==2.故答案为:2.【点评】本题的考点是正弦定理,主要考查正弦定理的运用,关键是利用面积公式,求出边,再利用正弦定理求解.16.已知,则__________.参考答案:-1【分析】首先利用,将其两边同时平方,利用同角三角函数关系式以及倍角公式得到,从而求得,利用诱导公式求得,得到结果.【详解】因为,所以,即,所以,故答案是.【点睛】该题考查的是有关三角函数化简求值问题,涉及到的知识点有同角三角函数关系式,倍角公式,诱导公式,属于简单题目.17.6人排成一排,则甲不站在排头的排法有
种.(用数字作答).参考答案:600【考点】D9:排列、组合及简单计数问题.【分析】本题是一个分步计数问题,首先排列甲有5种结果,再排列其余5个人,是一个全排列共有A55,根据乘法原理得到结果.【解答】解:由题意知本题是一个分步计数问题,首先排列甲有5种结果,再排列其余5个人,是一个全排列共有A55∴根据分步计数原理得到共有5A55=600,故答案为:600三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.直线l:y=kx+1与双曲线C:2x2﹣y2=1.(1)若直线与双曲线有且仅有一个公共点,求实数k的取值范围;(2)若直线分别与双曲线的两支各有一个公共点,求实数k的取值范围.参考答案:【考点】双曲线的简单性质.【分析】将直线方程代入双曲线方程,化为关于x的方程,利用方程的判别式,即可求得k的取值范围.【解答】解:由题意,直线l:y=kx+1与双曲线C:2x2﹣y2=1,可得2x2﹣(kx+1)2=1,整理得(2﹣k2)x2﹣2kx﹣2=0.(1)只有一个公共点,当2﹣k2=0,k=±时,符合条件;当2﹣k2≠0时,由△=16﹣4k2=0,解得k=±2;(2)交于异支两点,<0,解得﹣<k<.【点评】本题考查直线与圆锥曲线的关系,解题的关键是将问题转化为方程根的问题,运用判别式解决,注意只有一个公共点时,不要忽视了与渐近线平行的情况,属于易错题.19.已知函数f(x)=(1)若m∈(﹣2,2),求函数y=f(x)的单调区间;(2)若m∈(0,],则当x∈[0,m+1]时,函数y=f(x)的图象是否总在直线y=x上方,请写出判断过程.参考答案:【考点】函数单调性的判断与证明;函数的值域.【分析】(Ⅰ)求出函数的导数,通过讨论m的范围,求出函数的单调区间即可;(Ⅱ)令g(x)=x,讨论m的范围,根据函数的单调性求出g(x)的最大值和f(x)的最小值,结合函数恒成立分别判断即可证明结论.【解答】解:(Ⅰ)函数定义域为R,f′(x)=①当m+1=1,即m=0时,f′(x)≥0,此时f(x)在R递增,②当1<m+1<3即0<m<2x∈(﹣∞,1)时,f′(x)>0,f(x)递增,x∈(1,m+1)时,f′(x)<0,f(x)递减,x∈(m+1,+∞)时,f′(x)>0,f(x)递增;③0<m+1<1,即﹣1<m<0时,x∈(﹣∞,m+1)和(1,+∞),f′(x)>0,f(x)递增,x∈(m+1,1)时,f′(x)<0,f(x)递减;综上所述,①m=0时,f(x)在R递增,②0<m<2时,f(x)在(﹣∞,1),(m+1,+∞)递增,在(1,m+1)递减,③﹣2<m<0时,f(x)在(﹣∞,m+1),(1,+∞)递增,在(m+1,1)递减;(Ⅱ)当m∈(0,]时,由(1)知f(x)在(0,1)递增,在(1,m+1)递减,令g(x)=x,①当x∈[0,1]时,f(x)min=f(0)=1,g(x)max=1,所以函数f(x)图象在g(x)图象上方;②当x∈[1,m+1]时,函数f(x)单调递减,所以其最小值为f(m+1)=,g(x)最大值为m+1,所以下面判断f(m+1)与m+1的大小,即判断ex与(1+x)x的大小,其中x=m+1∈(1,],令m(x)=ex﹣(1+x)x,m′(x)=ex﹣2x﹣1,令h(x)=m′(x),则h′(x)=ex﹣2,因x=m+1∈(1,],所以h′(x)=ex﹣2>0,m′(x)单调递增;所以m′(1)=e﹣3<0,m′()=﹣4>0,故存在x0∈(1,]使得m′(x0)=ex0﹣2x0﹣1=0,所以m(x)在(1,x0)上单调递减,在(x0,)单调递增所以m(x)≥m(x0)=ex0﹣x02﹣x0=2x0+1﹣﹣x0=﹣+x0+1,所以x0∈(1,]时,m(x0)=﹣+x0+1>0,即ex>(1+x)x也即f(m+1)>m+1,所以函数f(x)的图象总在直线y=x上方.20.已知,则下列向量中是平面ABC的法向量的是
(
)A.
B. C. D.参考答案:C试题分析:设平面ABC的法向量为,那么,那么,那么,满足条件的只有C,故选C.考点:空间向量21.甲乙两人各自独立地进行射击比赛,甲、乙两人向射击一次,击中目标的概率分别是和,假设每次射击是否击中目标相互之间没有影响.(1)求甲射击3次,至少有1次未击中目标的概率;(2)求两人各射击3次,甲恰好击中目标2次且乙恰好击中目标1次的概率.参考答案:(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司自愿放弃安置协议书
- 单位签订乙肝合同范本
- 嘉兴器械仓储托管协议书
- 天津小区施工安全协议书
- 二人合伙经营公司协议书
- 水泥产能置换转让协议书
- 木材委托加工合同范本
- 买房合同纠纷调解协议书
- 四人合伙购买门市协议书
- 场地临时租用免责协议书
- 电磁场与电磁波期末考试复习试题4套(部分含答案)
- 国开电大《职业素质(职业素质专)》形考1答案
- 过敏性休克的急救及处理流程教材课件(28张)
- 交通协管员劳务外包服务方案
- 沪教牛津版七年级上册英语全册教案
- 先天性心脏病患儿护理查房
- 2022年山东省威海市中考数学试题及答案解析
- (完整版)农业主要知识点
- 高级财务管理试题及答案
- 医院宁群脑高灌注综合症监测和防治
- T∕CSEA 1-2018 锌铝涂层 技术条件
评论
0/150
提交评论