2022年山东省日照市普通高校对口单招数学自考测试卷(含答案)_第1页
2022年山东省日照市普通高校对口单招数学自考测试卷(含答案)_第2页
2022年山东省日照市普通高校对口单招数学自考测试卷(含答案)_第3页
2022年山东省日照市普通高校对口单招数学自考测试卷(含答案)_第4页
2022年山东省日照市普通高校对口单招数学自考测试卷(含答案)_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年山东省日照市普通高校对口单招数学自考测试卷(含答案)学校:________班级:________姓名:________考号:________

一、单选题(10题)1.圆心为(1,1)且过原点的圆的方程是()A.(x-l)2+(y-1)2=1

B.(x+1)2+(y+1)2=1

C.(x+1)2+(y+1)2=2

D.(x-1)2+(y-1)2=2

2.下列四个命题:①垂直于同一条直线的两条直线相互平行;②垂直于同一个平面的两条直线相互平行;③垂直于同一条直线的两个平面相互平行;④垂直于同一个平面的两个平面相互平行.其中正确的命题有()A.1个B.2个C.3个D.4个

3.袋中装有4个大小形状相同的球,其中黑球2个,白球2个,从袋中随机抽取2个球,至少有一个白球的概率为()A.

B.

C.

D.

4.下列立体几何中关于线面的四个命题正确的有()(1)垂直与同一平面的两个平面平行(2)若异面直线a,b不垂直,则过a的任何一个平面与b都不垂直(3)垂直与同一平面的两条直线一定平行(4)垂直于同一直线两个平面一定平行A.1个B.2个C.3个D.4个

5.设集合{x|-3<2x-1<3},集合B为函数y=lg(x-1)的定义域,则A∩B=()A.(1,2)B.[1,2]C.[1,2)D.(1,2]

6.已知让点P到椭圆的一个焦点的距离为3,则它到另一个焦点的距离为()A.2B.3C.5D.7

7.函数A.1B.2C.3D.4

8.袋中有大小相同的三个白球和两个黑球,从中任取两个球,两球同色的概率为()A.1/5B.2/5C.3/5D.4/5

9.A.B.C.D.

10.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为()A.内切B.相交C.外切D.相离

二、填空题(10题)11.函数f(x)=+㏒2x(x∈[1,2])的值域是________.

12.已知点A(5,-3)B(1,5),则点P的坐标是_____.

13.不等式的解集为_____.

14.双曲线3x2-y2=3的渐近线方程是

15.在△ABC中,若acosA=bcosB,则△ABC是

三角形。

16.若△ABC中,∠C=90°,,则=

17.

18.(x+2)6的展开式中x3的系数为

19.已知拋物线的顶点为原点,焦点在y轴上,拋物线上的点M(m,-2)到焦点的距离为4,则m的值为_____.

20.

三、计算题(5题)21.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.

22.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.

23.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。

24.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。

25.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.

四、简答题(10题)26.在ABC中,BC=,AC=3,sinC=2sinA(1)求AB的值(2)求的值

27.已知函数.(1)求f(x)的定义域;(2)判断f(x)的奇偶性,并加以证明;(3)a>1时,判断函数的单调性并加以证明。

28.在三棱锥P-ABC中,已知PA丄BC,PA=a,EC=b,PA,BC的公垂线EF=h,求三棱锥的体积

29.设等差数列的前n项数和为Sn,已知的通项公式及它的前n项和Tn.

30.已知a是第二象限内的角,简化

31.己知边长为a的正方形ABCD,PA丄底面ABCD,PA=a,求证,PC丄BD

32.设拋物线y2=4x与直线y=2x+b相交A,B于两点,弦AB长,求b的值

33.简化

34.等比数列{an}的前n项和Sn,已知S1,S3,S2成等差数列(1)求数列{an}的公比q(2)当a1-a3=3时,求Sn

35.已知抛物线y2=4x与直线y=2x+b相交与A,B两点,弦长为,求b的值。

五、解答题(10题)36.解不等式4<|1-3x|<7

37.已知椭圆x2/a2+y2/b2=1(a>b>0)的离心率为,右焦点为(,0),斜率为1的直线L与椭圆G交于A,B两点,以AB为底边作等腰三角形,顶点为P(-3,2).(1)求椭圆G的方程;(2)求△PAB的面积.

38.已知数列{an}是公差不为0的等差数列a1=2,且a2,a3,a4+1成等比数列.(1)求数列{an}的通项公式;(2)设bn=2/n(an+2),求数列{bn}的前n项和Sn.

39.如图,在正方体ABCD—A1B1C1D1中,E,F分别为棱AD,AB的中点.(1)求证:EF//平面CB1D1;(2)求证:平面CAA1C1丄平面CB1D1

40.已知等差数列{an}的前72项和为Sn,a5=8,S3=6.(1)求数列{an}的通项公式;(2)若数列{an}的前k项和Sk=72,求k的值.

41.

42.

43.

44.已知数列{an}是首项和公差相等的等差数列,其前n项和为Sn,且S10=55.(1)求an和Sn(2)设=bn=1/Sn,数列{bn}的前n项和为T=n,求Tn的取值范围.

45.

六、单选题(0题)46.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是()A.4πB.3πC.2πD.π

参考答案

1.D圆的标准方程.圆的半径r

2.B直线与平面垂直的性质,空间中直线与直线之间的位置关系.①垂直于同一条直线的两条直线相互平行,不正确,如正方体的一个顶角的三个边就不成立;②垂直于同一个平面的两条直线相互平行,根据线面垂直的性质定理可知正确;③垂直于同一条直线的两个平面相互平行,根据面面平行的判定定理可知正确;④垂直于同一个平面的两个平面相互平行,不正确,如正方体相邻的三个面就不成立.

3.D从中随即取出2个球,每个球被取到的可能性相同,因此所有的取法为,所取出的的2个球至少有1个白球,所有的取法为,由古典概型公式可知P=5/6.

4.B垂直于同一平面的两个平面不一定平行;垂直于一平面的直线与该平面内的所有直线垂直;垂直于同一平面的两条直线不一定平行也可能共线;垂直于同一直线的两个平面平行。

5.D不等式的计算,集合的运算.由题知A=[-1,2],B=(1,+∞),∴A∩B=(1,2]

6.D

7.B

8.B

9.C

10.B圆与圆的位置关系,两圆相交

11.[2,5]函数值的计算.因为y=2x,y=㏒2x为増函数,所以y=2x+㏒2x在[1,2]上单调递增,故f(x)∈[2,5].

12.(2,3),设P(x,y),AP=(x-5,y+3),AB=(-4,8),所以x-5=(-4)*(3/4)=-3;得x=2;y+3=8*(3/4)=6;得y=3;所以P(2,3).

13.-1<X<4,

14.

15.等腰或者直角三角形,

16.0-16

17.2

18.160

19.±4,

20.

21.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2

22.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为

23.

24.

25.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4

26.

27.(1)-1<x<1(2)奇函数(3)单调递增函数

28.

29.(1)∵

∴又∵等差数列∴∴(2)

30.

31.证明:连接ACPA⊥平面ABCD,PC是斜线,BD⊥ACPC⊥BD(三垂线定理)

32.由已知得整理得(2x+m)2=4x即∴再根据两点间距离公式得

33.

34.

35.

36.

37.

38.(1)设数列{an}的公差为d,由a1=2和a2,a3,a4+1成等比数列,得(2+2d)2=(2+d).(3+3d),解得d=2,或d=-1,当d=-1时a3=0与a2,a3,a4+1成等比数列矛盾,舍去.所以d=2,所以an=a1+(n-1)d=2+2(n-1)=2n即数列{an}的通项公式an=2n.

39.(1)如图,连接BD,在正方体AC1中,对角线BD//B1D1.又因为,E,F分别为棱AD,AB的中点,所以EF//BD,所以EF//B1D1,又因为B1D1包含于平面CB1D1,所以EF//平面CB1D1.

40.(1)设等差数列{an}的公差为d由题

41.

42.

43.

44.(1)设数列{an}的公差为d则a1=d,an=a1+(n-l)d=nd,由Sn=a1+a2+...+a10=55d=55,解得d=1,所以an=n,Sn=(1+n)n/2=1/2n(n

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论