版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年广东省东莞市普通高校对口单招数学自考预测试题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.如图,在长方体ABCD—A1B1C1D1中,AB=AD=3cm,AA1=2cm,则四棱锥A—BB1D1D的体积为()cm3.A.5B.6C.7D.8
2.在等比数列中,a1+a2=162,a3+a4=18,那么a4+a5等于()A.6B.-6C.±2D.±6
3.函数y=的定义域是()A.(-2,2)B.[-2,2)C.(-2,2]D.[-2,2]
4.某商品降价10%,欲恢复原价,则应提升()A.10%
B.20%
C.
D.
5.A.
B.
C.
6.下列各组数中,表示同一函数的是()A.
B.
C.
D.
7.函数在(-,3)上单调递增,则a的取值范围是()A.a≥6B.a≤6C.a>6D.-8
8.若集合M={3,1,a-1},N={-2,a2},N为M的真子集,则a的值是()A.-1
B.1
C.0
D.
9.若不等式|ax+2|<6的解集为(-1,2),则实数a等于()A.8B.2C.-4D.-8
10.下列表示同一函数的是()A.f(x)=x2/x+1与f(x)=x—1
B.f(x)=x0(x≠0)与f(x)=1
C.
D.f(x)=2x+l与f(t)=2t+1
二、填空题(10题)11.若f(x)=2x3+1,则f(1)=
。
12.设lgx=a,则lg(1000x)=
。
13.
14.已知函数f(x)=ax3的图象过点(-1,4),则a=_______.
15.己知等比数列2,4,8,16,…,则2048是它的第()项。
16.
17.
18.函数y=x2+5的递减区间是
。
19.
20.
三、计算题(5题)21.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
22.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
23.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。
24.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。
25.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.
四、简答题(10题)26.四棱锥S-ABCD中,底面ABOD为平行四边形,侧面SBC丄底面ABCD(1)证明:SA丄BC
27.已知集合求x,y的值
28.求到两定点A(-2,0)(1,0)的距离比等于2的点的轨迹方程
29.化简
30.证明:函数是奇函数
31.在ABC中,AC丄BC,ABC=45°,D是BC上的点且ADC=60°,BD=20,求AC的长
32.某篮球运动员进行投篮测验,每次投中的概率是0.9,假设每次投篮之间没有影响(1)求该运动员投篮三次都投中的概率(2)求该运动员投篮三次至少一次投中的概率
33.计算
34.已知函数(1)求函数f(x)的最小正周期及最值(2)令判断函数g(x)的奇偶性,并说明理由
35.已知平行四边形ABCD中,A(-1,0),B(-1,-4),C(3,-2),E是AD的中点,求。
五、解答题(10题)36.
37.如图,AB是⊙O的直径,P是⊙O所在平面外一点,PA垂直于⊙O所在的平面,且PA=AB=10,设点C为⊙O上异于A,B的任意一点.(1)求证:BC⊥平面PAC;(2)若AC=6,求三棱锥C-PAB的体积.
38.已知函数(1)f(π/6)的值;(2)求函数f(x)的最小正周期和单调递增区间.
39.如图,在三棱锥A-BCD中,AB丄平面BCD,BC丄BD,BC=3,BD=4,直线AD与平面BCD所成的角为45°点E,F分别是AC,AD的中点.(1)求证:EF//平面BCD;(2)求三棱锥A-BCD的体积.
40.已知递增等比数列{an}满足:a2+a3+a4=14,且a3+1是a2,a4的等差中项.(1)求数列{an}的通项公式;(2)若数列{an}的前n项和为Sn,求使Sn<63成立的正整数n的最大值.
41.
42.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是().A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样
43.如图,在四棱锥P-ABCD中,底面是正方形,PD⊥平面ABCD,且PD=AD.(1)求证:PA⊥CD;(2)求异面直线PA与BC所成角的大小.
44.
45.
六、单选题(0题)46.△ABC的内角A,B,C的对边分别为a,b,c已知a=,c=2,cosA=2/3,则b=()A.
B.
C.2
D.3
参考答案
1.B四棱锥的体积公式∵长方体底面ABCD是正方形,∴△ABD中BD=3cm,BD边上的高是3/2cm,∴四棱锥A-BB1DD1的体积为去1/3×3×2×3/2=6
2.D设公比等于q,则由题意可得,,解得,或。当时,,当时,,所以结果为。
3.C自变量x能取到2,但是不能取-2,因此答案为C。
4.C
5.A
6.B
7.A
8.A
9.C
10.D函数的定义域与对应关系.A、B中定义域不同;C中对应关系不同;D表示同一函数
11.3f(1)=2+1=3.
12.3+alg(1000x)=lg(1000)+lgx=3+a。
13.-3由于cos(x+π/6)的最小值为-1,所以函数f(x)的最小值为-3.
14.-2函数值的计算.由函数f(x)=ax3-2x过点(-1,4),得4=a(-1)3-2×(-1),解得a=-2.
15.第11项。由题可知,a1=2,q=2,所以an=2n,n=log2an=log22048=11。
16.5
17.-1/2
18.(-∞,0]。因为二次函数的对称轴是x=0,开口向上,所以递减区间为(-∞,0]。
19.(1,2)
20.{x|1<=x<=2}
21.
22.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
23.
24.
25.
26.证明:作SO丄BC,垂足为O,连接AO∵侧面SB丄底面ABCD∴SO丄底面ABCD∵SA=SB∴0A=0B又∵ABC=45°∴AOB是等腰直角三角形则OA丄OB得SA丄BC
27.
28.
29.
30.证明:∵∴则,此函数为奇函数
31.在指数△ABC中,∠ABC=45°,AC=BC在直角△ADC中,∠ADC=60°,CD=ACCD=BC-BD,BD=20则,则
32.(1)P=0.9×0.9×0.9=0.729(2)P=1-0.1×0.1×0.1=0.999
33.
34.(1)(2)∴又∴函数是偶函数
35.平行四边形ABCD,CD为AB平移所得,从B点开始平移,于是C平移了(4,2),所以,D(-1+4,0+2)=(3,2),E是AD中点,E[(-1+3)/2,(0+2)/2]=(1,1)向量EC=(3-1,-2-1)=(2,-3),向量ED=(3-1,2-1)=(2,1)向量EC×向量ED=2×2+(-3)×1=1。
36.
37.(1)∵PA垂直于⊙O所在的平面,BC包含于⊙O所在的平面,∴PA⊥BC,又∵AB为⊙O的直径,C为⊙O上异于A、B的-点,AC⊥BC,且PA∩AC=A,∴BC⊥平面PAC.(2)由(1)知△ABC为直角三角形且∠ACB=90°,又AC=6,AB=10,∴又∵PA=10,PA⊥AC,∴S△PAC=1/2PA.AC=1/2×10×6=30.∴VC-PAB=1/3×SPAC×BC=1/3×30×8=80
38.
39.
40.(1)设递增等比数列{an}的首项为a1,公比为q,依题意,有2(a3+1)=a2+a4,代入a2+a3+a4=14,得a3=4..由∵<a2+a4=10,由
41.
42.C
43.(1)如图,已知底面ABCD是正方形,∴CD⊥AD.∵PD⊥平面ABCD,又CD包含于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年固态电解质材料项目可行性研究报告
- 2026年大气污染溯源AI预警项目公司成立分析报告
- 2026年低糖低卡鸡尾酒项目可行性研究报告
- 2026年压电器件材料项目可行性研究报告
- 2026年绿色社区项目可行性研究报告
- 2026年智能瑜伽球项目公司成立分析报告
- 2026年医疗影像设备升级项目公司成立分析报告
- 人教PEP版小学五年级下册英语Unit 3 My school calendar教案(共5课时)
- 2026年植物营养师专业技能考试题目及答案
- 2026年高级外语应用题库多语种口语翻译与实践应用
- 2026年上海市宝山区初三上学期一模化学试卷和答案及评分标准
- 内蒙古赤峰市松山区2025-2026学年高一上学期期末数学试题(含答案)
- 2026年官方标准版离婚协议书
- 2025年国补自查自纠报告
- 未来五年造纸及纸制品企业数字化转型与智慧升级战略分析研究报告
- 2025年贵州省高考化学试卷真题(含答案及解析)
- 二级医院的DRGs培训课件
- 紧固件 弹簧垫圈 标准型(2025版)
- 2026年湖南中医药高等专科学校单招职业倾向性测试题库及答案详解一套
- 景区旅游基础设施提升项目可行性研究报告
- 港澳联考中文真题及答案
评论
0/150
提交评论