圆锥曲线常见的五种解题方法_第1页
圆锥曲线常见的五种解题方法_第2页
圆锥曲线常见的五种解题方法_第3页
圆锥曲线常见的五种解题方法_第4页
圆锥曲线常见的五种解题方法_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高中数学教研群QQ群号929518278精品资料每天更新公众号:高斯课堂圆锥曲线常见的五种解题方法弦的垂直平分线问题【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB的垂直平分线L的方程,往往是利用点差或者韦达定理产生弦AB的中点坐标M,结合弦AB与它的垂直平分线L的斜率互为负倒数,写出弦的垂直平分线L的方程,然后解决相关问题,比如:求L在x轴y轴上的截距的取值范围,求L过某定点等等。有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB的中点问题,比如:弦与某定点D构成以D为顶点的等腰三角形(即D在AB的垂直平分线上)、曲线上存在两点AB关于直线m对称等等。例题1、过点T(-1,0)作直线与曲线N:交于A、B两点,在x轴上是否存在一点E(,0),使得是等边三角形,若存在,求出;若不存在,请说明理由。解:依题意知,直线的斜率存在,且不等于0。设直线,,,。

由消y整理,得=1\*GB3①

由直线和抛物线交于两点,得

即=2\*GB3②

由韦达定理,得:。则线段AB的中点为。

线段的垂直平分线方程为:

令y=0,得,则

为正三角形,到直线AB的距离d为。

解得满足=2\*GB3②式此时。例题分析1:已知抛物线y=-x2+3上存在关于直线x+y=0对称的相异两点A、B,则|AB|等于解:设直线的方程为,由,进而可求出的中点,又由在直线上可求出,∴,由弦长公式可求出.共线向量问题1:如图所示,已知圆为圆上一动点,点P在AM上,点N在CM上,且满足的轨迹为曲线E.I)求曲线E的方程;II)若过定点F(0,2)的直线交曲线E于不同的两点G、H(点G在点F、H之间),且满足,求的取值范围.解:(1)∴NP为AM的垂直平分线,∴|NA|=|NM|又∴动点N的轨迹是以点C(-1,0),A(1,0)为焦点的椭圆.且椭圆长轴长为焦距2c=2.∴曲线E的方程为(2)当直线GH斜率存在时,设直线GH方程为得设,又当直线GH斜率不存在,方程为2:已知椭圆C的中心在坐标原点,焦点在轴上,它的一个顶点恰好是抛物线的焦点,离心率为.(1)求椭圆C的标准方程;(2)过椭圆C的右焦点作直线交椭圆C于、两点,交轴于点,若,,求证:.解:设椭圆C的方程为(>>)抛物线方程化为,其焦点为,则椭圆C的一个顶点为,即由,∴,椭圆C的方程为(2)证明:右焦点,设,显然直线的斜率存在,设直线的方程为,代入方程并整理,得∴,又,,,,而,,即,∴,,所以3、已知△OFQ的面积S=2,且。设以O为中心,F为焦点的双曲线经过Q,,当取得最小值时,求此双曲线方程。解:设双曲线方程为,Q(x0,y0)。,S△OFQ=,∴。=c(x0-c)=。当且仅当,所以。类型1——求待定字母的值例1设双曲线C:与直线L:x+y=1相交于两个不同的点A、B,直线L与y轴交于点P,且PA=,求的值思路:设A、B两点的坐标,将向量表达式转化为坐标表达式,再利用韦达定理,通过解方程组求a的值。 解:设A(x1,y1),B(x2,y2),P(0,1) ∵PA=∴x1=. 联立消去y并整理得,(1-a2)x2+2a2x-2a2=0 (*) ∵A、B是不同的两点,∴∴0<a<且a1.于是x1+x2=且x1x2=,即,消去x2得,=,∴a=,∵0<a<且a1,∴a=。类型2——求动点的轨迹例2如图2,动直线与y轴交于点A,与抛物交于不同的两点B和C,且满足BP=λPC,AB=λAC,其中。求ΔPOA的重心Q的轨迹。思路:将向量表达式转化为坐标表达式,消去参数λ获得重心Q的轨迹方程,再运用判别式确定实数k的取值范围,从而确定轨迹的形状。ABCOPxy解:由得,k2ABCOPxy由设P(x’,y’),B(x1,y1),C(x2,y2),(图2)则x1+x2=,x1.x2=.由= =由=。 消去k得,x’-2y’-6=0(*) 设重心Q(x,y),则,代入(*)式得,3x-6y-4=0。因为故点Q的轨迹方程是3x-6y-4=0(),其轨迹是直线3x-6y-4=0上且不包括点的线段AB。类型3——证明定值问题例3已知椭圆的中心在坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A、B两点,与共线。设M为椭圆上任意一点,且,其中证明:为定值。思路:设A、B、M三点的坐标,将向量间的共线关系、和差关系转化为代数关系,再利用方程组、韦达定理、点在椭圆上满足方程等证明定值。解:设椭圆方程为则直线AB的方程为代入椭圆方程中,化简得,设A(x1,y1),B(x2,y2),则由与共线,得,。又而于是。因此椭圆方程为设M(x,y),由得,,因M为椭圆上一点,所以即①又,则而代入①得,=1,为定值。类型4——探索点、线的存在性例4在△ABC中,已知B(-2,0),C(2,0),AD⊥BC于D,△ABC的垂心H分有向线段AD设P(-1,0),Q(1,0),那么是否存在点H,使成等差数列,为什么?思路:先将AC⊥BH转化为代数关系,由此获得动点H的轨迹方程;再将向量的长度关系转化为代数(坐标)关系,通过解代数方程组获解。解:设H(x,y),由分点坐标公式知∵H为垂心∴AC⊥BH,∴,整理得,动点H的轨迹方程为。,,。假设成等差数列,则即①∵H在椭圆上a=2,b=,c=1,P、Q是焦点,∴,即∴②由①得,③联立②、③可得,,∴显然满足H点的轨迹方程,故存在点H(0,±),使成等差数列。类型5——求相关量的取值范围例5给定抛物线C:,F是C的焦点,过点F的直线l与C相交于A、B两点,且,求l在轴上截距的变化范围。思路:设A、B两点的坐标,将向量间的共线关系转化为坐标关系,再求出l在轴上的截距,利用函数的单调性求其变化范围。解:设A(x1,y1),B(x2,y2),由得,,即由②得,③。联立①、③得,。而当直线l垂直于轴时,不符合题意。因此直线l的方程为或直线l在轴上的截距为或由知,在上递减的,所以于是直线l在轴上截距的变化范围是存在、向量例6、双曲线,若上存在一点。解:方程为,即。由,消去y得,定值问题例7:是抛物线上的两点,满足(为坐标原点),求证:(1)两点的横坐标之积、纵坐标之积分别是定值;(2)直线经过一定点。分析:(1)设,则又由(2)直线的方程为,故直线过定点。弦或弦长为定值、最值问题1、已知△的面积为,(1)设,求正切值的取值范围;(2)设以O为中心,F为焦点的双曲线经过点Q(如图),当取得最小值时,求此双曲线的方程。解析:(1)设(2)设所求的双曲线方程为∴,∴又∵,∴当且仅当时,最小,此时的坐标是或,所求方程为2、已知椭圆两焦点分别为F1、F2,P是椭圆在第一象限弧上一点,并满足,过P作倾斜角互补的两条直线PA、PB分别交椭圆于A、B两点.(Ⅰ)求P点坐标;(Ⅱ)求证直线AB的斜率为定值;(Ⅲ)求△PAB面积的最大值.解:(Ⅰ)由题可得,,设则,,∴,∵点在曲线上,则,∴,从而,得.则点P的坐标为.(Ⅱ)由题意知,两直线PA、PB的斜率必存在,设PB的斜率为,则BP的直线方程为:.由得,设,则,同理可得,则,.所以:AB的斜率为定值.(Ⅲ)设AB的直线方程:.由,得,由,得P到AB的距离为,则。当且仅当取等号∴三角形PAB面积的最大值为。3、已知椭圆的左焦点为F,O为坐标原点。 (I)求过点O、F,并且与椭圆的左准线相切的圆的方程;(II)设过点F且不与坐标轴垂直的直线交椭圆于A、B两点,线段AB的垂直平分线与轴交于点G,求点G横坐标的取值范围。解:(I) 圆过点O、F, 圆心M在直线上。 设则圆半径 由得解得所求圆的方程为(II)设直线AB的方程为代入整理得直线AB过椭圆的左焦点F,方程有两个不等实根。记中点 则的垂直平分线NG的方程为令得点G横坐标的取值范围为4、已知点的坐标分别是,,直线相交于点M,且它们的斜率之积为.(1)求点M轨迹的方程;(2)若过点的直线与(1)中的轨迹交于不同的两点、(在、之间),试求与面积之比的取值范围(为坐标原点).解:(1)设点的坐标为,∵,∴.整理,得(),(2)如图,由题意知直线的斜率存在,设的方程为将①代入,整理,得,由,解得.设,,则令,且..∵且,,解得且.,且.故△OBE与△OBF面积之比的取值范围是.5、已知椭圆:的右顶点为,过的焦点且垂直长轴的弦长为.(I)求椭圆的方程;(II)设点在抛物线:上,在点处的切线与交于点.当线段的中点与的中点的横坐标相等时,求的最小值.解析:(I)由题意得所求的椭圆方程为,(II)不妨设则抛物线在点P处的切线斜率为,直线MN的方程为,将上式代入椭圆的方程中,得,即,因为直线MN与椭圆有两个不同的交点,所以有,设线段MN的中点的横坐标是,则,设线段PA的中点的横坐标是,则,由题意得,即有,其中的或;当时有,因此不等式不成立;因此,当时代入方程得,将代入不等式成立,因此的最小值为1.四.直线问题例题1、设椭圆过点,且着焦点为(Ⅰ)求椭圆的方程;(Ⅱ)当过点的动直线与椭圆相交与两不同点时,在线段上取点,满足,证明:点总在某定直线上解(1)由题意:,解得,所求椭圆方程为(2)方法一设点Q、A、B的坐标分别为。由题设知均不为零,记,则且又A,P,B,Q四点共线,从而于是,,从而,(1),(2)又点A、B在椭圆C上,即(1)+(2)×2并结合(3),(4)得即点总在定直线上方法二设点,由题设,均不为零。且又四点共线,可设,于是(1)(2)由于在椭圆C上,将(1),(2)分别代入C的方程整理得(3)(4)(4)-(3)得即点总在定直线上2、已知曲线上任意一点到两个定点和的距离之和为4.(1)求曲线的方程;(2)设过的直线与曲线交于、两点,且(为坐标原点),求直线的方程.解:(1)根据椭圆的定义,可知动点的轨迹为椭圆,其中,,则.所以动点M的轨迹方程为.(2)当直线的斜率不存在时,不满足题意.当直线的斜率存在时,设直线的方程为,设,,∵,∴.∵,,∴①∴.由方程组得.则,,代入①,得.即,解得,或.所以,直线的方程是或.3、设、分别是椭圆的左、右焦点。(Ⅰ)若是该椭圆上的一个动点,求·的最大值和最小值;(Ⅱ)设过定点的直线与椭圆交于不同的两点、,且∠为锐角(其中为坐标原点),求直线的斜率的取值范围。解:(Ⅰ)解法一:易知所以,设,则因为,故当,即点为椭圆短轴端点时,有最小值当,即点为椭圆长轴端点时,有最大值解法二:易知,所以,设,则(以下同解法一)(Ⅱ)显然直线不满足题设条件,可设直线,联立,消去,整理得:∴由得:或又∴又∵,即∴故由①、②得或五.轨迹问题轨迹法:1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y的等式,就得到轨迹方程,这种方法称之为直接法;例1、已知直角坐标系中,点Q(2,0),圆C的方程为,动点M到圆C的切线长与的比等于常数,求动点M的轨迹。【解析】设MN切圆C于N,则。设,则化简得当时,方程为,表示一条直线。当时,方程化为表示一个圆。◎◎如图,圆与圆的半径都是1,.过动点分别作圆、圆的切线(分别为切点),使得.试建立适当的坐标系,并求动点的轨迹方程.【解析】以的中点为原点,所在直线为轴,建立如图所示的平面直角坐标系,则,.由已知,得.因为两圆半径均为1,所以.设,则,即.(或)评析:1、用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。2、求轨迹方程一般只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么。2.定义法:运用解析几何中一些常用定义(例如圆锥曲线的定义),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程。例2、已知动圆过定点,且与直线相切,其中.求动圆圆心的轨迹的方程;【解析】如图,设为动圆圆心,为记为,过点作直线的垂线,垂足为,由题意知:即动点到定点与定直线的距离相等,由抛物线的定义知,点的轨迹为抛物线,其中为焦点,为准线,所以轨迹方程为;◎◎已知圆O的方程为x2+y2=100,点A的坐标为(-6,0),M为圆O上任一点,AM的垂直平分线交OM于点P,求点P的方程。【解析】由中垂线知,故,即P点的轨迹为以A、O为焦点的椭圆,中心为(-3,0),故P点的方程为◎◎已知A、B、C是直线l上的三点,且|AB|=|BC|=6,⊙O′切直线l于点A,又过B、C作⊙O′异于l的两切线,设这两切线交于点P,求点P的轨迹方程.【解析】设过B、C异于l的两切线分别切⊙O′于D、E两点,两切线交于点P.由切线的性质知:|BA|=|BD|,|PD|=|PE|,|CA|=|CE|,故|PB|+|PC|=|BD|+|PD|+|PC|=|BA|+|PE|+|PC|=|BA|+|CE|=|AB|+|CA|=6+12=18>6=|BC|,故由椭圆定义知,点P的轨迹是以B、C为两焦点的椭圆,以l所在的直线为x轴,以BC的中点为原点,建立坐标系,可求得动点P的轨迹方程为:llO'PEDCBA评析:定义法的关键是条件的转化——转化成某一基本轨迹的定义条件。三、相关点法:动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点Q(x’,y’)的运动而有规律的运动,且动点Q的轨迹为给定或容易求得,则可先将x’,y’表示为x,y的式子,再代入Q的轨迹方程,然而整理得P的轨迹方程,代入法也称相关点法。几何法:利用平面几何或解析几何的知识分析图形性质,发现动点运动规律和动点满足的条件,然而得出动点的轨迹方程。例3、如图,从双曲线x2-y2=1上一点Q引直线x+y=2的垂线,垂足为N。求线段QN的中点P的轨迹方程。【解析】设动点P的坐标为(x,y),点Q的坐标为(x1,y1)则N(2x-x1,2y-y1)代入x+y=2,得2x-x1+2y-y1=2①又PQ垂直于直线x+y=2,故,即x-y+y1-x1=0②由①②解方程组得,代入双曲线方程即可得P点的轨迹方程是2x2-2y2-2x+2y-1=0◎◎已知椭圆的左、右焦点分别是F1(-c,0)、F2(c,0),Q是椭圆外的动点,满足点P是线段F1Q与该椭圆的交点,点T在线段F2Q上,并且满足求点T的轨迹C的方程;【解析】解法一:(相关点法)设点T的坐标为当时,点(,0)和点(-,0)在轨迹上.当|时,由,得.又,所以T为线段F2Q的中点.设点Q的坐标为(),则因此①由得②将①代入②,可得综上所述,点T的轨迹C的方程是解法二:(几何法)设点T的坐标为当时,点(,0)和点(-,0)在轨迹上.当|时,由,得.又,所以T为线段F2Q的中点.在△QF1F2中,,所以有综上所述,点T的轨迹C的方程是评析:一般地:定比分点问题,对称问题或能转化为这两类的轨迹问题,都可用相关点法。四、参数法:求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程。例4、在平面直角坐标系xOy中,抛物线y=x2上异于坐标原点O的两不同动点A、B满足AO⊥BO(如图4所示).求△AOB的重心G(即三角形三条中线的交点)的轨迹方程;【解析】解法一:以OA的斜率k为参数由解得A(k,k2)∵OA⊥OB,∴OB:由解得B设△AOB的重心G(x,y),则消去参数k得重心G的轨迹方程为解法二:设△AOB的重心为G(x,y),A(x1,y1),B(x2,y2),则…(1)∵OA⊥OB∴,即,……(2)又点A,B在抛物线上,有,代入(2)化简得∴所以重心为G的轨迹方程为。◎◎如图,设抛物线的焦点为F,动点P在直线上运动,过P作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点.求△APB的重心G的轨迹方程.【解析】设切点A、B坐标分别为,∴切线AP的方程为:切线BP的方程为:解得P点的坐标为:所以△APB的重心G的坐标为,所以,由点P在直线l上运动,从而得到重心G的轨迹方程为:五、交轨法:求两动曲线交

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论