版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.角的终边过点,则等于()A. B. C. D.2.已知圆柱的侧面展开图是一个边长为的正方形,则这个圆柱的体积是()A. B. C. D.3.()A. B. C. D.4.已知等比数列中,,,则()A.10 B.7 C.4 D.125.若角α的终边经过点P(-1,1A.sinα=1C.cosα=26.执行如图所示的程序框图,若输入,则输出()A.5 B.8 C.13 D.217.过点,且圆心在直线上的圆的方程是()A. B.C. D.8.如图,位于处的海面观测站获悉,在其正东方向相距40海里的处有一艘渔船遇险,并在原地等待营救.在处南偏西且相距20海里的处有一救援船,其速度为海里小时,则该船到求助处的时间为()分钟.A.24 B.36 C.48 D.609..设、是关于x的方程的两个不相等的实数根,那么过两点,的直线与圆的位置关系是()A.相离. B.相切. C.相交. D.随m的变化而变化.10.若,,,,则等于()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.对于任意x>0,不等式3x2-2mx+12>012.已知,则______;的最小值为______.13.已知中内角的对边分别是,,,,则为_____.14.向量.若向量,则实数的值是________.15.若,则__________.16.若为的最小内角,则函数的值域为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆过两点,,且圆心在直线上.(1)求圆的标准方程;(2)求过点且与圆相切的直线方程.18.已知函数.(1)当时,,求的值;(2)令,若对任意都有恒成立,求的最大值.19.已知函数,且,.(1)求,的值及的定义域;(2)若存在,使得成立,求实数的取值范围.20.某厂家拟在2020年举行促销活动,经调查测算,某产品的年销售量(即该厂的年产量)万件与年促销费用万元,满足(为常数),如果不搞促销活动,则该产品的年销售量只能是1万件,已知2020年生产该产品的固定投入为8万元,每生产1万件,该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2020年该产品的利润(万元)表示为年促销费用(万元)的函数;(2)该厂家2020年的促销费用投入多少万元时,厂家的利润最大?21.已知等差数列的前项和为,且,.(1)求数列的通项公式;(2)请确定是否是数列中的项?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由三角函数的定义知,x=-1,y=2,r==,∴sinα==.2、A【解析】
由已知易得圆柱的高为,底面圆周长为,求出半径进而求得底面圆半径即可求出圆柱体积。【详解】底面圆周长,,所以故选:A【点睛】此题考查圆柱的侧面展开为长方形,长为底面圆周长,宽为圆柱高,属于简单题目。3、A【解析】
将根据诱导公式化为后,利用两角和的正弦公式可得.【详解】.故选:A【点睛】本题考查了诱导公式,考查了两角和的正弦公式,属于基础题.4、C【解析】
由等比数列性质可知,进而根据对数的运算法则计算即可【详解】由题,因为等比数列,所以,则,故选:C【点睛】本题考查等比数列的性质的应用,考查对数的运算5、B【解析】
利用三角函数的定义可得α的三个三角函数值后可得正确的选项.【详解】因为角α的终边经过点P-1,1,故r=OP=所以sinα=【点睛】本题考查三角函数的定义,属于基础题.6、C【解析】
通过程序一步步分析得到结果,从而得到输出结果.【详解】开始:,执行程序:;;;;,执行“否”,输出的值为13,故选C.【点睛】本题主要考查算法框图的输出结果,意在考查学生的分析能力及计算能力,难度不大.7、C【解析】
直接根据所给信息,利用排除法解题。【详解】本题作为选择题,可采用排除法,根据圆心在直线上,排除B、D,点在圆上,排除A故选C【点睛】本题考查利用排除法选出圆的标准方程,属于基础题。8、A【解析】
利用余弦定理求出的长度,然后根据速度、时间、路程之间的关系求出时间即可.【详解】由题意可知:,运用余弦定理可知:该船到求助处的时间,故本题选A.【点睛】本题考查了余弦定理的应用,考查了数学运算能力.9、D【解析】直线AB的方程为.即,所以直线AB的方程为,因为,所以,所以,所以直线AB与圆可能相交,也可能相切,也可能相离.10、C【解析】
利用同角三角函数的基本关系求出与,然后利用两角差的余弦公式求出值.【详解】,,则,,则,所以,,因此,,故选C.【点睛】本题考查利用两角和的余弦公式求值,解决这类求值问题需要注意以下两点:①利用同角三角平方关系求值时,要求对象角的范围,确定所求值的正负;②利用已知角来配凑未知角,然后利用合适的公式求解.二、填空题:本大题共6小题,每小题5分,共30分。11、(-∞,6)【解析】
先参变分离转化为对应函数最值问题,再通过求函数最值得结果.【详解】因为3x2-2mx+12>0,所以m<3x2+【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.12、50【解析】
由分段函数的表达式,代入计算即可;先求出的表达式,结合分段函数的性质,求最小值即可.【详解】由,可得,,所以;由的表达式,可得,当时,,此时,当时,,由二次函数的性质可知,,综上,的最小值为0.故答案为:5;0.【点睛】本题考查求函数值,考查分段函数的性质,考查函数最值的计算,考查学生的计算能力,属于基础题.13、【解析】
根据正弦定理即可.【详解】因为,,;所以,由正弦定理可得【点睛】本题主要考查了正弦定理:,属于基础题.14、-3【解析】
试题分析:∵,∴,又∵,∴,∴,∴考点:本题考查了向量的坐标运算点评:熟练运用向量的坐标运算是解决此类问题的关键,属基础题15、;【解析】
把分子的1换成,然后弦化切,代入计算.【详解】.故答案为-1.【点睛】本题考查三角函数的化简求值.解题关键是“1”的代换,即,然后弦化切.16、【解析】
依题意,,利用辅助角公式得,利用正弦函数的单调性即可求得的取值范围,在利用换元法以及同角三角函数基本关系式把所求问题转化结合基本不等式即可求解.【详解】∵为的最小内角,故,又,因为,故,∴取值范围是.令,则且∴,令,由双勾函数可知在上为增函数,故,故.故答案为:.【点睛】本题考查同角的三角函数的基本关系、辅助角公式以及正弦型函数的值域,注意根据代数式的结构特点换元后将三角函数的问题转化为双勾函数的问题,本题属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)设圆心坐标为,根据,求得,进而得到圆的方程;(2)由在圆上,则,得到,求得,进而求得圆的切线方程.【详解】(1)由题意,圆心在直线上,设圆心坐标为,由,即,所以,圆心,半径,圆的标准方程为.(2)设切线方程为,因为在圆上,所以,所以,又,所以,所以切线方程为,即,所以过的切线方程.【点睛】本题主要考查了圆的方程的求解,以及直线与圆的位置关系的应用,其中解答中熟记圆的方程的形式,以及圆的切线的性质是解答的关键,着重考查了推理与运算能力,属于基础题.18、(1);(2)【解析】
(1)根据得,得或,结合取值范围求解;(2)结合换元法处理二次不等式恒成立求参数的取值范围.【详解】(1),即,即有,所以或,即或由于,,所以;(2),令,对任意都有恒成立,即对恒成立,只需,解得:,所以的最大值为.【点睛】此题考查根据三角函数值相等求自变量取值的关系,利用换元法转化为二次函数处理不等式问题,根据不等式恒成立求参数的取值范围,涉及根的分布的问题.19、(1),,定义域;(2)【解析】
(1)由已知得,可求出、,由对数函数的定义域可得,求出的范围,即可得到的定义域;(2)设,可得,由复合函数单调性,可得在上的单调性,从而可得时,的最大值,令,解不等式即可得到答案.【详解】(1)由已知得,即,解得,,由得,所以,即,所以定义域为.(2),设,由时,可得,因为在上单调递增,所以可得在上单调递增,故当时,的最大值为,由题意,,即,即,因为,所以,即.故时,存在,使得成立.【点睛】本题考查对数函数的性质,考查复合函数单调性,考查存在性问题,考查学生的计算能力与推理能力,属于中档题.20、(1);(2)厂家2020年的促销费用投入3万元时,厂家的利润最大,为21万元.【解析】
(1)由不搞促销活动,则该产品的年销售量只能是1万件,可求k的值,再求出每件产品销售价格的代数式,则利润(万元)表示为年促销费用(万元)的函数可求.(2)由(1)得,再根据均值不等式可解.注意取等号.【详解】(1)由题意知,当时,所以,每件产品的销售价格为元.所以2020年的利润;(2)由(1)知,,当且仅当,即时取等号,该厂家2020年的促销费用投入3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家长沟通培训课件
- 家长学生安全培训课件
- 2026年奶茶店经营合同
- 2026年空调电路维修合同
- 2026年工业联营合同
- 游戏2026年代言合同协议
- 2026年员工劳动合同见证协议
- 2026年电子商务营销推广合同协议
- 2026年销售代表提成合同协议
- 2026年心理咨询评估合同
- 矿业企业精益管理实施方案与案例
- 2024年水利部黄河水利委员会事业单位招聘高校毕业生考试真题
- 2025四川成都益民集团所属企业招聘财务综合岗等岗位28人考试重点题库及答案解析
- 脑缺血与急性脑梗死的影像学表现教学设计
- 中国仓储物流中心运营管理现状与发展趋势研究报告
- 提高铝模板施工质量合格率
- MT/T 106-1996顺槽用刮板转载机通用技术条件
- GB/T 6672-2001塑料薄膜和薄片厚度测定机械测量法
- GB/T 4139-2012钒铁
- 精品课程《人文地理学》完整版
- 某电子制造公司钣金工程图纸绘制规范
评论
0/150
提交评论