版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是的共轭复数,若复数,则在复平面内对应的点是()A. B. C. D.2.已知一直线经过两点,,且倾斜角为,则的值为()A.-6 B.-4 C.2 D.63.一个几何体的三视图分别是一个正方形,一个矩形,一个半圆,尺寸大小如图所示,则该几何体的体积是()A. B. C. D.4.已知单位向量,,满足.若点在内,且,,则下列式子一定成立的是()A. B.C. D.5.不等式的解集为,则的值为(
)A. B.C. D.6.函数,是A.最小正周期为的奇函数 B.最小正周期为的偶函数C.最小正周期为的奇函数 D.最小正周期为的偶函数7.设,满足约束条件,则目标函数的最大值是()A.3 B. C.1 D.8.已知某几何体的三视图如图所示,则该几何体的表面积为()A. B. C. D.9.已知x,y为正实数,则()A.2lgx+lgy=2lgx+2lgy B.2lg(x+y)=2lgx•2lgyC.2lgx•lgy=2lgx+2lgy D.2lg(xy)=2lgx•2lgy10.已知四棱锥中,平面平面,其中为正方形,为等腰直角三角形,,则四棱锥外接球的表面积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知求______________.12.不等式有解,则实数的取值范围是______.13.下图中的几何体是由两个有共同底面的圆锥组成.已知两个圆锥的顶点分别为P、Q,高分别为2、1,底面半径为1.A为底面圆周上的定点,B为底面圆周上的动点(不与A重合).下列四个结论:①三棱锥体积的最大值为;②直线PB与平面PAQ所成角的最大值为;③当直线BQ与AP所成角最小时,其正弦值为;④直线BQ与AP所成角的最大值为;其中正确的结论有___________.(写出所有正确结论的编号)14.如图,两个正方形,边长为2,.将绕旋转一周,则在旋转过程中,与平面的距离最大值为______.15.数列的前项和为,,,则________.16.=__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求的单调递增区间;(2)求在区间上的最值.18.已知圆过点,,圆心在直线上,是直线上任意一点.(1)求圆的方程;(2)过点向圆引两条切线,切点分别为,,求四边形的面积的最小值.19.两地相距千米,汽车从地匀速行驶到地,速度不超过千米小时,已知汽车每小时的运输成本(单位:元)由可变部分和固定部分两部分组成:可变部分与速度的平方成正比,比例系数为,固定部分为元,(1)把全程运输成本(元)表示为速度(千米小时)的函效:并求出当时,汽车应以多大速度行驶,才能使得全程运输成本最小;(2)随着汽车的折旧,运输成本会发生一些变化,那么当,此时汽车的速度应调整为多大,才会使得运输成本最小,20.已知数列的前项和,满足.(1)若,求数列的通项公式;(2)在满足(1)的条件下,求数列的前项和的表达式;21.某校为创建“绿色校园”,在校园内种植树木,有A、B、C三种树木可供选择,已知这三种树木6年内的生长规律如下:A树木:种植前树木高0.84米,第一年能长高0.1米,以后每年比上一年多长高0.2米;B树木:种植前树木高0.84米,第一年能长高0.04米,以后每年生长的高度是上一年生长高度的2倍;C树木:树木的高度(单位:米)与生长年限(单位:年,)满足如下函数:(表示种植前树木的高度,取).(1)若要求6年内树木的高度超过5米,你会选择哪种树木?为什么?(2)若选C树木,从种植起的6年内,第几年内生长最快?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由,得,所以在复平面内对应的点为,故选A.2、C【解析】
根据倾斜角为得到斜率,再根据两点斜率公式计算得到答案.【详解】一直线经过两点,,则直线的斜率为.直线的倾斜角为∴,即.故答案选C.【点睛】本题考查了直线的斜率,意在考查学生的计算能力.3、C【解析】
由给定的几何体的三视图得到该几何体表示一个底面半径为1,母线长为2的半圆柱,结合圆柱的体积公式,即可求解.【详解】由题意,根据给定的几何体的三视图可得:该几何体表示一个底面半径为1,母线长为2的半圆柱,所以该半圆柱的体积为.故选:C.【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.4、D【解析】
设,对比得到答案.【详解】设,则故答案为D【点睛】本题考查了向量的计算,意在考查学生的计算能力.5、B【解析】
根据一元二次不等式解集与对应一元二次方程根的关系列方程组,解得a,c的值.【详解】由题意得为方程两根,所以,选B.【点睛】一元二次方程的根与对应一元二次不等式解集以及对应二次函数零点的关系,是数形结合思想,等价转化思想的具体体现,注意转化时的等价性.6、A【解析】
判断函数函数,的奇偶性,求出其周期即可得到结论.【详解】设则故函数函数,是奇函数,由故函数,是最小正周期为的奇函数.故选A.【点睛】本题考查正弦函数的奇偶性和周期性,属基础题.7、C【解析】
作出不等式组对应的平面区域,结合图形找出最优解,从而求出目标函数的最大值.【详解】作出不等式组对应的平面区域,如阴影部分所示;平移直线,由图像可知当直线经过点时,最大.,解得,即,所以的最大值为1.故答案为选C【点睛】本题给出二元一次不等式组,求目标函数的最大值,着重考查二元一次不等式组表示的平面区域和简单的线性规划,也考查了数形结合的解题思想方法,属于基础题.8、B【解析】
由三视图判断该几何体是有三条棱两两垂直是三棱锥,结合三视图的数据可得结果.【详解】由三视图可得该几何体是如图所示的三棱锥,其中AB,BC,BP两两垂直,且,则和的面积都是1,的面积为2,在中,,则的面积为,所以该几何体的表面积为,故选:B.【点睛】三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.9、D【解析】因为as+t=as•at,lg(xy)=lgx+lgy(x,y为正实数),所以2lg(xy)=2lgx+lgy=2lgx•2lgy,满足上述两个公式,故选D.10、D【解析】
因为为等腰直角三角形,,故,则点到平面的距离为,而底面正方形的中心到边的距离也为,则顶点正方形中心的距离,正方形的外接圆的半径为,故正方形的中心是球心,则球的半径为,所以该几何体外接球的表面积,应选D.二、填空题:本大题共6小题,每小题5分,共30分。11、23【解析】
直接利用数量积的坐标表示求解.【详解】由题得.故答案为23【点睛】本题主要考查平面向量的数量积的计算,意在考查学生对该知识的理解掌握水平,属于基础题.12、【解析】
由参变量分离法可得知,由二倍角的余弦公式以及二次函数的基本性质求出函数的最小值,即可得出实数的取值范围.【详解】不等式有解,等价于存在实数,使得关于的不等式成立,故只需.令,,由二次函数的基本性质可知,当时,该函数取得最小值,即,.因此,实数的取值范围是.故答案为:.【点睛】本题考查不等式有解的问题,涉及二倍角余弦公式以及二次函数基本性质的应用,一般转化为函数的最值来求解,考查计算能力,属于中等题.13、①③【解析】
由①可知只需求点A到面的最大值对于②,求直线PB与平面PAQ所成角的最大值,可转化为到轴截面距离的最大值问题进行求解对于③④,可采用建系法进行分析【详解】选项①如图所示,当时,四棱锥体积最大,选项②中,线PB与平面PAQ所成角最大值的正弦值为,所以选项③和④,如图所示:以垂直于方向为x轴,方向为y轴,方向为z轴,其中设,.,设直线BQ与AP所成角为,,当时,取到最大值,,此时,由于,,,所以取不到答案选①、③【点睛】几何体的旋转问题需要结合动态图形和立体几何基本知识进行求解,需找临界点是正确解题的关键,遇到难以把握的最值问题,可采用建系法进行求解.14、【解析】
绕旋转一周得到的几何体是圆锥,点的轨迹是圆.过作平面平面,交平面于.的轨迹在平面内.画出图像,根据图像判断出圆的下顶点距离平面的距离最大,解三角形求得这个距离的最大值.【详解】绕旋转一周得到的几何体是圆锥,故点的轨迹是圆.过作平面平面,交平面于.的轨迹在平面内.画出图像如下图所示,根据图像作法可知,当位于圆心的正下方点位置时,到平面的距离最大.在平面内,过作,交于.在中,,.所以①.其中,,所以①可化为.故答案为:【点睛】本小题主要考查旋转体的概念,考查空间点到面的距离的最大值的求法,考查空间想象能力和运算能力,属于中档题.15、18【解析】
利用,化简得到数列是首项为,公比为的等比数列,利用,即可求解.【详解】,即所以数列是首项为,公比为的等比数列即所以故答案为:【点睛】本题主要考查了与的关系以及等比数列的通项公式,属于基础题.16、2【解析】由对数的运算性质可得到,故答案为2.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)最大值为,最小值为.【解析】
(1)利用两角和的正弦公式以及二倍角的余弦公式、两角和的余弦公式将函数的解析式化简为,然后解不等式可得出函数的单调递增区间;(2)由,可计算出,然后由余弦函数的基本性质可求出函数在区间上的最大值和最小值.【详解】(1),解不等式,得,因此,函数的单调递增区间为;(2)当时,.当时,函数取得最大值;当时,函数取得最小值.【点睛】本题考查三角函数单调区间以及在定区间上最值的求解,解题时要利用三角恒等变换思想将三角函数的解析式化简,并借助正弦函数或余弦函数的基本性质进行求解,考查分析问题和解决问题的能力,属于中等题.18、(1)(2)【解析】
(1)首先列出圆的标准方程,根据条件代入,得到关于的方程求解;(2)根据切线的对称性,可知,,这样求面积的最小值即是求的最小值,当点是圆心到直线的距离的垂足时,最小.【详解】解:(1)设圆的方程为.由题意得解得故圆的方程为.另解:先求线段的中垂线与直线的交点,即解得从而得到圆心坐标为,再求,故圆的方程为.(2)设四边形的面积为,则.因为是圆的切线,所以,所以,即.因为,所以.因为是直线上的任意一点,所以,则,即.故四边形的面积的最小值为.【点睛】本题考查了圆的标准方程,和与圆,切线有关的最值的计算,与圆有关的最值计算,需注意数形结合.19、(1),当汽车以的速度行驶,能使得全称运输成本最小;(2).【解析】
(1)计算出汽车的行驶时间为小时,可得出全程运输成本为,其中,代入,,利用基本不等式求解;(2)注意到时,利用基本不等式取不到等号,转而利用双勾函数的单调性求解.【详解】(1)由题意可知,汽车从地到地所用时间为小时,全程成本为,.当,时,,当且仅当时取等号,所以,汽车应以的速度行驶,能使得全程行驶成本最小;(2)当,时,,由双勾函数的单调性可知,当时,有最小值,所以,汽车应以的速度行驶,才能使得全程运输成本最小.【点睛】本题考查基本不等式的应用,解题的关键就是建立函数模型,得出函数解析式,并通过基本不等式进行求解,考查学生数学应用能力,属于中等题.20、(1);(2).【解析】
(1)已知求,利用即可求出;(2)根据数列通项公式特征,采取分组求和法和错位相减法求出【详解】(1)因为,所以,当时,,所以;当时,,即,,因为,所以,,即,当时,也符合公式.综上,数列的通项公式为.(2)因为,所以()由得,两式作差得,,即,故.【点睛】本题主要考查求数列通项的方法——公式法和构造法的应用,以及数列的求和方法——分组求和法和错位相减法的应用.21、(1)选择C;(2)第4或第5年.【解析】
(1)根据已知求出三种树木六年末的高度,判断得解;(2)设为第年内树木生长的高度,先求出,设,则,.再利用分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗器械创新与知识产权保护
- 2026年福州工商学院单招职业技能考试参考题库带答案解析
- 2026年广西工程职业学院单招综合素质笔试模拟试题带答案解析
- 账户管理课件培训内容
- 医疗人员职业礼仪与职业素养
- 智能化医疗设备应用探讨
- 2026年贵州食品工程职业学院单招综合素质考试参考题库带答案解析
- 生物仿制药研发与市场前景
- 财税管控课件
- 医护人员职业素质培养
- (2025年)功能性消化不良中西医结合诊疗专家共识解读课件
- 2026春外研社版英语八下单词表(先鸟版)
- 人教版(PEP)四年级上学期英语期末卷(含答案)
- 非煤地下矿山员工培训
- 人员转签实施方案
- C强制认证培训资料课件
- 2025秋南方新课堂金牌学案中国历史七年级上册(配人教版)(教师用书)
- 企业财务会计制度完整模板
- 体育场所知识培训内容课件
- 绿色金融在绿色金融人才培养中的应用与展望研究报告
- 急性心力衰竭PBL课件
评论
0/150
提交评论