2023年河北省定州市、博野县数学高一第二学期期末达标测试试题含解析_第1页
2023年河北省定州市、博野县数学高一第二学期期末达标测试试题含解析_第2页
2023年河北省定州市、博野县数学高一第二学期期末达标测试试题含解析_第3页
2023年河北省定州市、博野县数学高一第二学期期末达标测试试题含解析_第4页
2023年河北省定州市、博野县数学高一第二学期期末达标测试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一块各面均涂有油漆的正方体被锯成27个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,从中任意取出一个,则取出的小正方体两面涂有油漆的概率是()A.127 B.29 C.42.一个几何体的三视图如图所示,则这个几何的体积为()立方单位.A. B.C. D.3.等差数列{an}的前n项之和为Sn,若A.45 B.54C.63 D.274.设全集,集合,,则()A. B.C. D.5.已知平面向量,,且,则=A. B. C. D.6.直线的斜率为()A. B. C. D.7.已知点,,则与向量的方向相反的单位向量是()A. B. C. D.8.已知数列的前项和为,且,则()A. B. C. D.9.我国古代著名的周髀算经中提到:凡八节二十四气,气损益九寸九分六分分之一;冬至晷长一丈三尺五寸,夏至晷长一尺六寸意思是:一年有二十四个节气,每相邻两个节气之间的日影长度差为分;且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分则“立春”时日影长度为A.分 B.分 C.分 D.分10.等比数列的前n项和为,已知,则A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在等比数列中,若,则__________.12.在中,给出如下命题:①是所在平面内一定点,且满足,则是的垂心;②是所在平面内一定点,动点满足,,则动点一定过的重心;③是内一定点,且,则;④若且,则为等边三角形,其中正确的命题为_____(将所有正确命题的序号都填上)13.已知,是第三象限角,则.14.设向量,,______.15.若点为圆的弦的中点,则弦所在的直线的方程为___________.16.设,,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知为数列的前n项和,且.(1)求数列的通项公式;(2)若,求数列的前n项和.18.某校从参加高二年级期末考试的学生中抽出60名学生,并统计了他们的化学成绩(成绩均为整数且满分为100分),把其中不低于50分的分成五段,,…,后画出如图部分频率分布直方图.观察图形的信息,回答下列问题:(1)求出这60名学生中化学成绩低于50分的人数;(2)估计高二年级这次考试化学学科及格率(60分以上为及格);(3)从化学成绩不及格的学生中随机调查1人,求他的成绩低于50分的概率.19.已知,且.(1)求的值;(2)求的值.20.已知数列满足,,.(1)求数列的通项公式;(2)设,求数列的前项和.21.已知圆的半径是2,圆心在直线上,且圆与直线相切.(1)求圆的方程;(2)若点是圆上的动点,点在轴上,的最大值等于7,求点的坐标.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

先求出基本事件总数n=27,在得到的27个小正方体中,若其两面涂有油漆,则这个小正方体必在原正方体的某一条棱上,且原正方体的一条棱上只有一个两面涂有油漆的小正方体,则两面涂有油漆的小正方体共有12个,由此能求出在27个小正方体中,任取一个其两面涂有油漆的概率.【详解】∵一块各面均涂有油漆的正方体被锯成27个大小相同的小正方体,∴基本事件总数n=27,在得到的27个小正方体中,若其两面涂有油漆,则这个小正方体必在原正方体的某一条棱上,且原正方体的一条棱上只有一个两面涂有油漆的小正方体,则两面涂有油漆的小正方体共有12个,则在27个小正方体中,任取一个其两面涂有油漆的概率P=1227=故选:C【点睛】本题考查概率的求法,考查古典概型、正方体性质等基础知识,考查推理论证能力、空间想象能力,考查函数与方程思想,是基础题.2、D【解析】由三视图可知几何体是由一个四棱锥和半个圆柱组合而成的,所以所求的体积为,故选D.3、B【解析】

由等差数列的性质,可知a1【详解】由等差数列的性质,可知a1又由等差数列的前n项和公式,可得S9【点睛】本题主要考查了等差数列的性质,以及前n项和公式的应用,其中解答中熟记等差数列的性质,以及利用等差数列的求和公式,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.4、A【解析】

进行交集、补集的运算即可.【详解】∁UB={x|﹣2<x<1};∴A∩(∁UB)={x|﹣1<x<1}.故选:A.【点睛】考查描述法的定义,以及交集、补集的运算.5、B【解析】

根据向量平行求出x的值,结合向量模长的坐标公式进行求解即可.【详解】且,则故故选B.【点睛】本题考查向量模长的计算,根据向量平行的坐标公式求出x的值是解决本题的关键.6、A【解析】

化直线方程为斜截式求解.【详解】直线可化为,∴直线的斜率是,故选:A.【点睛】本题考查直线方程,将一般方程转化为斜截式方程即可得直线的斜率,属于基础题.7、A【解析】

根据单位向量的定义即可求解.【详解】,向量的方向相反的单位向量为,故选A.【点睛】本题主要考查了向量的坐标运算,向量的单位向量的概念,属于中档题.8、D【解析】

通过和关系,计算通项公式,再计算,代入数据得到答案.【详解】,取,两式相减得:是首项为4,公比为2的等比数列.故答案选D【点睛】本题考查了等比数列的通项公式,前N项和,意在考查学生的计算能力.9、B【解析】

首先“冬至”时日影长度最大,为1350分,“夏至”时日影长度最小,为160分,即可求出,进而求出立春”时日影长度为.【详解】解:一年有二十四个节气,每相邻两个节气之间的日影长度差为分,且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分.,解得,“立春”时日影长度为:分.故选B.【点睛】本题考查等差数列的性质等基础知识,考查运算求解能力,利用等差数列的性质直接求解.10、A【解析】设公比为q,则,选A.二、填空题:本大题共6小题,每小题5分,共30分。11、80【解析】

由即可求出【详解】因为是等比数列,所以,所以即故答案为:80【点睛】本题考查的是等比数列的性质,较简单12、①②④.【解析】

①:运用已知的式子进行合理的变形,可以得到,进而得到,再次运用等式同样可以得到,,这样可以证明出是的垂心;②:运用平面向量的减法的运算法则、加法的几何意义,结合平面向量共线定理,可以证明本命题是真命题;③:运用平面向量的加法的几何意义以及平面向量共线定理,结合面积公式,可证明出本结论是错误的;④:运用平面向量的加法几何意义和平面向量的数量积的定义,可以证明出本结论是正确的.【详解】①:,同理可得:,,所以本命题是真命题;②:,设的中点为,所以有,因此动点一定过的重心,故本命题是真命题;③:由,可得设的中点为,,,故本命题是假命题;④:由可知角的平分线垂直于底边,故是等腰三角形,由可知:,所以是等边三角形,故本命题是真命题,因此正确的命题为①②④.【点睛】本题考查了平面向量的加法的几何意义和平面向量数量积的运算,考查了数形结合思想.13、.【解析】试题分析:根据同角三角函数的基本关系知,,化简整理得①,又因为②,联立方程①②即可解得:,,又因为是第三象限角,所以,故.考点:同角三角函数的基本关系.14、【解析】

利用向量夹角的坐标公式即可计算.【详解】.【点睛】本题主要考查了向量夹角公式的坐标运算,属于容易题.15、;【解析】

利用垂径定理,即圆心与弦中点连线垂直于弦.【详解】圆标准方程为,圆心为,,∵是中点,∴,即,∴的方程为,即.故答案为.【点睛】本题考查垂径定理.圆中弦问题,常常要用垂径定理,如弦长(其中为圆心到弦所在直线的距离).16、【解析】

由,根据两角差的正切公式可解得.【详解】,故答案为【点睛】本题主要考查了两角差的正切公式的应用,属于基础知识的考查.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)先根据和项与通项关系得项之间递推关系,再根据等比数列定义以及通项公式求结果,(2)根据错位相减法求结果.【详解】(1)因为,所以当时,,相减得,,当时,,因此数列为首项为,2为公比的等比数列,(2),所以,则2,两式相减得.【点睛】本题考查错位相减法求和以及由和项求通项,考查基本求解能力,属中档题.18、(1)6人;(2)75%;(3).【解析】试题分析:(1)由频率分布直方图可得化学成绩低于50分的频率为0.1,然后可求得人数为人;(2)根据频率分布直方图求分数在第三、四、五、六组的频率之和即可;(3)结合图形可得“成绩低于50分”的人数是6人,成绩在这组的人数是,由古典概型概率公式可得所求概率为。试题解析:(1)因为各组的频率和等于1,由频率分布直方图可得低于50分的频率为:,所以低于分的人数为(人).(2)依题意可得成绩60及以上的分数所在的第三、四、五、六组(低于50分的为第一组),其频率之和为,故抽样学生成绩的及格率是,于是,可以估计这次考试化学学科及格率约为75%.(3)由(1)知,“成绩低于50分”的人数是6人,成绩在这组的人数是(人),所以从成绩不及格的学生中随机调查1人,有15种选法,成绩低于50分有6种选法,故所求概率为.19、(1)(2)【解析】

(1)由即可求得;(2)可由的差角公式进行求解【详解】(1)由题可知,,,(2),又由前式可判断,,,故,【点睛】本题考查三角函数的计算,二倍角公式的使用,两角差公式的使用,易错点为忽略具体的角度范围,属于中档题20、(1);(2)【解析】

(1)由,构造是以为首项,为公比等比数列,利用等比数列的通项公式可得结果;(2)由(1)得,利用裂项相消可求.【详解】(1)由得:,即,且数列是以为首项,为公比的等比数列数列的通项公式为:(2)由(1)得:【点睛】关系式可构造为,中档题。21、(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论