版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.从四件正品、两件次品中随机取出两件,记“至少有一件次品”为事件,则的对立事件是()A.至多有一件次品 B.两件全是正品 C.两件全是次品 D.至多有一件正品2.若,,则()A. B. C. D.3.从一批产品中取出两件产品,事件“至少有一件是次品”的对立事件是A.至多有一件是次品 B.两件都是次品C.只有一件是次品 D.两件都不是次品4.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为()A.75°B.60°C.45°D.30°5.已知在等差数列中,的等差中项为,的等差中项为,则数列的通项公式()A. B.-1 C.+1 D.-36.已知偶函数在区间上单调递增,则满足的的取值范围是()A. B.C. D.7.已知点和点,是直线上的一点,则的最小值是()A. B. C. D.8.直线被圆截得的劣弧与优弧的长之比是()A. B. C. D.9.在中,是的中点,是上的一点,且,若,则实数()A.2 B.3 C.4 D.510.已知,则,,的大小顺序为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在长方体中,,,,如图,建立空间直角坐标系,则该长方体的中心的坐标为_________.12.方程的解为_________.13.已知无穷等比数列的首项为,公比为q,且,则首项的取值范围是________.14.已知中,,则面积的最大值为_____15.如图,正方体的棱长为2,点在正方形的边界及其内部运动,平面区域由所有满足的点组成,则的面积是__________.16.分形几何学是美籍法国数学家伯努瓦.B.曼德尔布罗特在20世纪70年代创立的一门新学科,它的创立,为解决传统科学众多领域的难题提供了全新的思路,下图是按照一定的分形规律生长成一个数形图,则第13行的实心圆点的个数是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,单位圆与轴正半轴相交于点,圆上的动点从点出发沿逆时针旋转一周回到点,设(),的面积为(当三点共线时,),与的函数关系如图所示的程序框图.(1)写出程序框图中①②处的函数关系式;(2)若输出的值为,求点的坐标.18.一只红铃虫的产卵数和温度有关,现收集了4组观测数据列于下表中,根据数据作出散点图如下:温度20253035产卵数/个520100325(1)根据散点图判断与哪一个更适宜作为产卵数关于温度的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立关于的回归方程(数字保留2位小数);(3)要使得产卵数不超过50,则温度控制在多少以下?(最后结果保留到整数)参考数据:,,,,,,,,,,5201003251.6134.615.7819.自变量在什么范围取值时,函数的值等于0?大于0呢?小于0呢?20.的内角的对边分别为.(1)求证:;(2)在边上取一点P,若.求证:.21.已知函数f(x)=2sinωxcosωx+cos2ωx(ω>0)的最小正周期为π.(Ⅰ)求ω的值;(Ⅱ)求f(x)的单调递增区间.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
根据对立事件的概念,选出正确选项.【详解】从四件正品、两件次品中随机取出两件,“至少有一件次品”的对立事件为两件全是正品.故选:B【点睛】本小题主要考查对立事件的理解,属于基础题.2、D【解析】
利用集合的补集的定义求出的补集;利用子集的定义判断出.【详解】解:,,,,故选:.【点睛】本题考查利用集合的交集、补集、并集定义求交集、补集、并集;利用集合包含关系的定义判断集合的包含关系.3、D【解析】试题分析:根据对立事件的定义,至少有n个的对立事件是至多有n﹣1个,由事件A:“至少有一件次品”,我们易得结果.解:∵至少有n个的否定是至多有n﹣1个又∵事件A:“至少有一件次品”,∴事件A的对立事件为:至多有零件次品,即是两件都不是次品.故答案为D.点评:本题考查的知识点是互斥事件和对立事件,互斥事件关键是要抓住不可能同时发生的要点,对立事件则要抓住有且只有一个发生,可以转化命题的否定,集合的补集来进行求解.4、C【解析】如图:是底面中心,是侧棱与底面所成的角;在直角中,故选C5、D【解析】试题分析:由于数列是等差数列,所以的等差中项是,故有,又有的等差中项是,所以,从而等差数列的公差,因此其通项公式为,故选D.考点:等差数列.6、A【解析】
根据题意,由函数的奇偶性分析可得,进而结合单调性分析可得,解可得的取值范围,即可得答案.【详解】解:根据题意,为偶函数,则,
又由函数在区间上单调递增,
则,
解得:,
故选:A.【点睛】本题考查函数的奇偶性与单调性的综合应用,关键是得到关于的不等式.7、D【解析】
求出A关于直线l:的对称点为C,则BC即为所求【详解】如下图所示:点,关于直线l:的对称点为C(0,2),连接BC,此时的最小值为故选D.【点睛】本题考查的知识点是两点间距离公式的应用,难度不大,属于中档题.8、A【解析】
计算出圆心到直线的距离,根据垂径定理,结合锐角三角函数关系,可以求出劣弧所对的圆心角的度数,根据弧度制的定义,这样就可以求出劣弧与优弧的长之比.【详解】圆心O到直线的距离为:,直线被圆截得的弦为AB,弦AB所对的圆心角为,弦AB的中点为C,由垂径定理可知:,所以,劣弧与优弧的长之比为:,故本题选A.【点睛】本题考查了圆的垂径定理、点到直线距离公式、弧长公式,考查了数学运算能力.9、C【解析】
选择以作为基底表示,根据变形成,即可求解.【详解】在中,根据平行四边形法则,有,是的中点,,由题:,即,,,所以,所以解得:故选:C【点睛】此题考查平面向量的线性运算,根据平面向量基本定理处理系数关系.10、B【解析】
由三角函数的辅助角公式、余弦函数的二倍角公式,正切函数的和角公式求得.【详解】故选B.【点睛】本题考查三角函数的辅助角公式、余弦函数的二倍角公式,正切函数的和角公式的三角恒等变换,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
先求出点B的坐标,再求出M的坐标.【详解】由题得B(4,6,0),,因为M点是中点,所以点M坐标为.故答案为【点睛】本题主要考查空间坐标的求法,意在考查学生对该知识的理解掌握水平,属于基础题.12、【解析】
根据特殊角的三角函数及正切函数的周期为kπ,即可得到原方程的解.【详解】则故答案为:【点睛】此题考查学生掌握正切函数的图象及周期性,是一道基础题.13、【解析】
根据极限存在得出,对分、和三种情况讨论得出与之间的关系,可得出的取值范围.【详解】由于,则.①当时,则,;②当时,则,;③当时,,解得.综上所述:首项的取值范围是,故答案为:.【点睛】本题考查极限的应用,要结合极限的定义得出公比的取值范围,同时要对公比的取值范围进行分类讨论,考查分类讨论思想的应用,属于中等题.14、【解析】
设,则,根据面积公式得,由余弦定理求得代入化简,由三角形三边关系求得,由二次函数的性质求得取得最大值.【详解】解:设,则,根据面积公式得,由余弦定理可得,可得:,由三角形三边关系有:,且,解得:,故当时,取得最大值,故答案为:.【点睛】本题主要考查余弦定理和面积公式在解三角形中的应用.当涉及最值问题时,可考虑用函数的单调性和定义域等问题,属于中档题.15、【解析】,所以点平面区域是底面内以为圆心,以1为半径的外面区域,则的面积是16、【解析】
观察图像可知每一个实心圆点的下一行均分为一个实心圆点与一个空心圆点,每个空心圆点下一行均为实心圆点.再利用规律找到行与行之间的递推关系即可.【详解】由图像可得每一个实心圆点的下一行均分为一个实心圆点与一个空心圆点,每个空心圆点下一行均为实心圆点.故从第三行开始,每行的实心圆点数均为前两行之和.即.故第1到第13行中实心圆点的个数分别为:.故答案为:【点睛】本题主要考查了递推数列的实际运用,需要观察求得行与行之间的实心圆点的递推关系,属于中等题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析【解析】
(1)通过实际问题得到与的函数关系为分段函数,从而判断出程序框填的结果.(2)分类讨论时和时两种情形下的点Q坐标,从而得到答案.【详解】(1)当时,,当时,函数的解析式为,故程序框图中①②处的函数关系式分别是,(2)时,令,即,或,点的坐标为或时,令,即,或,点的坐标为或故点的坐标为【点睛】本题主要考查算法框图,三角函数的运用,意在考查学生的数形结合思想,分析实际问题的能力.18、(I)选择更适宜作为产卵数关于温度的回归方程类型;(II);(III)要使得产卵数不超过50,则温度控制在以下.【解析】
(I)由于散点图类似指数函数的图像,由此选择.(II)对;两边取以为底底而得对数,将非线性回归的问题转化为线性回归的问题,利用回归直线方程的计算公式计算出回归直线方程,进而化简为回归曲线方程.(III)令,解指数不等式求得温度的控制范围.【详解】(I)依散点图可知,选择更适宜作为产卵数关于温度的回归方程类型。(II)因为,令,所以与可看成线性回归,,所以,所以,即,(III)由即,解得,要使得产卵数不超过50,则温度控制在以下。【点睛】本小题主要考查散点图的判断,考查非线性回归的求解方法,考查线性归回直线方程的计算公式,考查了利用回归方程进行预测.属于中档题.解题的关键点有两个,首先是根据散点图选择出恰当的回归方程,其次是要将非线性回归的问题,转化为线性回归来求解.19、当或时,函数的值等于0;当时,函数的值大于0;当或时,函数的值小于0.【解析】
将问题转化为解方程和解不等式,以及,分别求解即可.【详解】由题:由得:或;由得:;由得:或,综上所述:当或时,函数的值等于0;当时,函数的值大于0;当或时,函数的值小于0.【点睛】此题考查解二次方程和二次不等式,关键在于熟练掌握二次方程和二次不等式的解法,准确求解.20、(1)详见解析;(2)详见解析.【解析】
(1)余弦定理的证明其实在课本就直接给出过它向量方法的证明,通过,等向量模长相等就可,当然我们还可以通过坐标的运算完成(如方法二)(2)通过点P,将三角形分割,这种题中多注意几个相等(公共边相等,)我们可以得到相对应的等量关系,完成本题.【详解】(1)证法一:如图,即证法二:已知中所对边分别为,以为原点,所在直线为轴建立直角坐标系,则,所以(2)令,由余弦定理得:,因为所以所以所以【点睛】(1)向量既有大小又有方向.在几何中是一种很重要的工具,比如三角形中,三边有大小,角度问题我们可以转化为向量夹角相关,所以很容易想到向量方法.(2)解组合三角形问题,多注重图形中一些恒等关系比如边长、角度问题.21、(Ⅰ)(Ⅱ)().【解析】试题分析:(Ⅰ)运用两角和的正弦公式对f(x)化简整理,由周期公式求ω的值;(Ⅱ)根据函数y=sinx的单调递增区间对应求解即可.试题解析:(Ⅰ)因为,所以的最小正周期.依题意,,解得.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 46951-2025建筑施工单位节水管理规范
- 吉林省吉林市蛟河市2025-2026学年七年级上学期1月期末考试地理试卷(无答案)
- 贵州省安顺市2025-2026学年上学期期末高二数学试卷(含答案)
- 广东省中山市2025-2026学年八年级上学期期末测试地理试卷(无答案)
- 2025-2026学年山东省烟台市高三(上)期末数学试卷(含答案)
- 12月衍生品月报:衍生品市场提示情绪中性
- 飞机配送员培训课件模板
- 2026年玉沣科技(西安)有限公司招聘(39人)备考考试题库及答案解析
- 2026山东事业单位统考烟台招远市招聘47人备考考试题库及答案解析
- 2026年度延边州教育局所属事业单位教师专项招聘(53人)参考考试题库及答案解析
- 数字孪生方案
- 【低空经济】无人机AI巡检系统设计方案
- 金融领域人工智能算法应用伦理与安全评规范
- 2025年公务员多省联考《申论》题(陕西A卷)及参考答案
- 《造血干细胞移植护理指南》课件
- 中国土壤污染防治法培训
- 升降车安全技术交底(一)
- 附:江西省会计师事务所服务收费标准【模板】
- 合欢花苷类对泌尿系感染的抗菌作用
- 合伙人股权合同协议书
- 工程施工监理技术标
评论
0/150
提交评论