版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高考数学总复习第1章第3课时变量的相关性、统计案例文-A3演示文稿设计与制作第3课时变量的相关性、统计案例考点探究·挑战高考考向瞭望·把脉高考双基研习·面对高考第3课时双基研习·面对高考1.变量间的相关关系(1)变量与变量之间的关系常见的有两类:一类是_________的函数关系;另一类是变量间确实存在关系,但又不具备函数关系所要求的________,它们的关系是带有________的.(2)如果一个变量的值由小变大时,另一个变量的值___________,这种相关称为正相关,如果一个变量的值由小变大时,另一个变量的值_________,这种相关称为负相关.确定性确定性基础梳理随机性由小变大由大变小思考感悟相关关系与函数关系有什么异同点?提示:相同点:两者均是指两个变量的关系.不同点:①函数关系是一种确定的关系,相关关系是一种非确定的关系.②函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.回归直线方程回归系数估计值回归系数(4)样本相关系数r具有以下性质:|r|__1,并且|r|越接近1,线性相关程度_______;|r|越接近0,线性相关程度_______.越强越弱≤3.独立性检验(1)假设有两个分类变量X和Y,它们的值域分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为:y1y2合计x1n11n12n1+x2n21n22n2+合计n+1n+2n(2)两个临界值:3.841与6.635.对于事件A与B,当___________时,有95%的把握说事件A与B有关;当___________时,有99%的把握说事件A与B有关;当___________时,认为事件A与B是无关的.χ2>3.841χ2>6.635χ2≤3.841课前热身1.下列关系中,是相关关系的为(
)①学生的学习态度与学习成绩之间的关系;②教师的执教水平与学生的学习成绩之间的关系;③学生的身高与学生的学习成绩之间的关系;④家庭的经济条件与学生的学习成绩之间的关系.A.①②B.①③C.②③D.②④答案:A2.有关线性回归的说法,不正确的是(
)
A.具有相关关系的两个变量是非确定关系B.散点图能直观地反映数据的相关程度C.回归直线最能代表线性相关的两个变量之间的关系D.散点图中的点越集中,两个变量的相关性越强答案:D3.对于事件A和事件B,通过计算得到χ2的观测值χ2≈4.514,下列说法正确的是(
)A.有99%的把握说事件A和事件B有关B.有95%的把握说事件A和事件B有关C.有99%的把握说事件A和事件B无关D.有95%的把握说事件A和事件B无关答案:B4.据两个变量x,y之间的观测数据画成散点图如图,这两个变量是否具有线性相关关系__________(填“是”或“否”).答案:否答案:11.69考点探究·挑战高考判断两个变量的相关关系考点一考点突破(1)判断两变量之间有无相关关系,一种常用的简便可行的方法是绘散点图.散点图是由数据点分布构成的,是分析研究两个变量相关关系的重要手段,从散点图中,如果发现点的分布从整体上看大致在一条直线附近,那么这两个变量是线性相关的.(2)用回归直线进行拟合两个变量的关系.5个学生的数学和物理成绩如下表:例1学生学科ABCDE数学8075706560物理7066686462画出散点图,判断它们是否有相关关系.【解】以x轴表示数学成绩,y轴表示物理成绩,可得到相应的散点图如图所示:由散点图可知,两者之间具有相关关系,且为线性相关.【规律小结】判断两变量是否有相关关系很容易将相关关系与函数关系混淆.相关关系是一种非确定性关系,即是非随机变量与随机变量之间的关系,而函数关系是一种因果关系,如例1中以数学成绩为x轴,以物理成绩为y轴,建系描点后,可知两者并不是函数关系,而是相关关系,并且是线性相关关系.考点二回归方程的求法及回归分析下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.例2x3456y2.5344.5【解】
(1)由题设所给数据,可得散点图如图所示:互动探究1
在本例条件下,若该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?解:由(2)的回归方程及技改前生产100吨甲产品的生产能耗,得降低的生产能耗为90-(0.7×100+0.35)=19.65(吨标准煤).考点三独立性检验某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:例3积极参加班级工作不太主动参加班级工作合计学习积极性高18725学习积极性一般61925合计242650试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关系?说明理由.【思路分析】根据公式χ2计算后与临界值比较.【规律小结】独立性检验应注意的问题.(1)在列联表中注意事件的对应及有关值的确定,避免混乱.(2)若要求判断X与Y无关,应先假设X与Y有关系.互动探究2
在本例条件下,如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?方法技巧1.求回归方程,关键在于正确求出系数a,b,由于a,b的计算量大,计算时应仔细谨慎,分层进行,避免因计算而产生错误.(注意回归直线方程中一次项系数为b,常数项为a,这与一次函数的习惯表示不同)方法感悟2.回归分析是处理变量相关关系的一种数学方法.主要解决:(1)确定特定量之间是否有相关关系,如果有就找出它们之间贴近的数学表达式;(2)根据一组观察值,预测变量的取值及判断变量取值的变化趋势;(3)求出回归直线方程.3.独立性检验是一种假设检验,在对总体的估计中,通过抽取样本,构造合适的随机变量,对假设的正确性进行判断.失误防范1.回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的回归直线方程才有实际意义,否则,求出的回归直线方程毫无意义.2.根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.3.r的大小只说明是否相关并不能说明拟合效果的好坏,R2才是判断拟合效果好坏的依据.4.独立性检验的随机变量χ2=2.706是判断是否有关系的临界值,χ2<2.076应判断为没有充分证据显示X与Y有关系,而不能作为小于90%的量化值来判断.考向瞭望·把脉高考考情分析从近几年的高考试题来看,高考对此部分内容考查有加强趋势,主要是以考查独立性检验、回归分析为主,并借助解决一些简单的实际问题来考查一些基本的统计思想,在高考中多为选择、填空题,也有解答题出现.预测2012年高考,散点图与相关关系仍是考查的重点,同时应注意线性回归方程、独立性检验在实际生活中的应用.(本题满分12分)(2010年高考课标全国卷)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:规范解答例性别是否需要志愿者男女需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.由于9.967>6.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关.9分(3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法,比采用简单随机抽样方法更好.12分【名师点评】本题考查了独立性检验,考生在求解时有一定难度;导致考生在该题得分较低,错误原因为:一是a、b、c、d所表示数字对应错,二是第(3)问中分析不到位,有个别考生有乱说现象.名师预测解析:选D.①是系统抽样;对于④,随机变量χ2的观测值k越小,说明两个变量有关系的把握程度越小.2.下表是某厂1~4月份用水量(单位:百吨)的一组数据:月份x1234用水量y4.5432.53.下面是一个2×2列联表y1y2总计x1a2173x222527总计b46则表中a、b处的值分别为________.解析:∵a+21=73,∴a=52.又∵a+2=b,∴b=54.答案:52、54感谢观看谢谢大家A3演示文稿设计与制作信息技术2.0微能力认证作业中小学教师继续教育参考资料高考数学总复习第课时直接证明与间接证明文-A3演示文稿设计与制作第6课时直接证明与间接证明第6课时直接证明与间接证明考点探究·挑战高考考向瞭望·把脉高考温故夯基·面对高考温故夯基·面对高考证明的结论推理论证成立充分条件内容综合法分析法文字语言因为…所以…或由…得…要证…只需证即证…思考感悟综合法和分析法的区别与联系是什么?提示:综合法的特点是:从“已知”看“可知”,逐步推向“未知”.其逐步推理实际上是寻找它的必要条件.分析法的特点是:从“未知”看“需知”,逐步靠拢“已知”.其逐步推理实际上是寻求它的充分条件.在解决问题时,经常把综合法和分析法综合起来使用.2.间接证明反证法:假设原命题_______
(即在原命题的条件下,结论不成立),经过正确的推理,最后得出_____.因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.不成立矛盾考点探究·挑战高考综合法考点一考点突破综合法是“由因导果”,它是从已知条件出发,顺着推证,经过一系列的中间推理,最后导出所证结论的真实性.用综合法证明的逻辑关系是:A⇒B1⇒B2⇒…⇒Bn⇒B(A为已知条件或数学定义、定理、公理等,B为要证结论),它的常见书面表达是“∵,∴”或“⇒”.例1分析法考点二分析法是“执果索因”,一步步寻求上一步成立的充分条件.它是从要求证的结论出发,倒着分析,由未知想需知,由需知逐渐地靠近已知(已知条件,已经学过的定义、定理、公理、公式、法则等).用分析法证明命题的逻辑关系是:B⇐B1⇐B2⇐…⇐Bn⇐A.它的常见书面表达是“要证……只需……”或“⇐”.例2【思路分析】
ab⇔a·b=0,利用a2=|a|2求证.平方得|a|2+|b|2+2|a||b|≤2(|a|2+|b|2-2a·b),只需证|a|2+|b|2-2|a||b|≥0,即(|a|-|b|)2≥0,显然成立.故原不等式得证.【误区警示】本题从要证明的结论出发,探求使结论成立的充分条件,最后找到的恰恰都是已证的命题(定义、公理、定理、法则、公式等)或要证命题的已知条件时,命题得证.这正是分析法证明问题的一般思路.一般地,含有根号、绝对值的等式或不等式,若从正面不易推导时,可以考虑用分析法.反证法考点三反证法体现了正难则反的思维方法,用反证法证明问题的一般步骤是:(1)分清问题的条件和结论;(2)假定所要证的结论不成立,而设结论的反面成立(否定结论);(3)从假设和条件出发,经过正确的推理,导出与已知条件、公理、定理、定义及明显成立的事实相矛盾或自相矛盾(推导矛盾);(4)因为推理正确,所以断定产生矛盾的原因是“假设”错误.既然结论的反面不成立,从而证明了原结论成立(结论成立).例3【思路分析】
(1)利用求和公式先求公差d,(2)利用反证法证明.【名师点评】当一个命题的结论是以“至多”、“至少”、“唯一”或以否定形式出现时,宜用反证法来证,反证法的关键是在正确的推理下得出矛盾,矛盾可以是与已知条件矛盾,与假设矛盾,与定义、公理、定理矛盾,与事实矛盾等,反证法常常是解决某些“疑难”问题的有力工具,是数学证明中的一件有力武器.方法感悟方法技巧1.分析法和综合法各有优缺点.分析法思考起来比较自然,容易寻找到解题的思路和方法,缺点是思路逆行,叙述较繁琐;综合法从条件推出结论,较简洁地解决问题,但不便于思考.实际证题时常常两法兼用,先用分析法探索证明途径,然后再用综合法叙述出来.2.利用反证法证明数学问题时,要假设结论错误,并用假设命题进行推理,没有用假设命题推理而推出矛盾结果,其推理过程是错误的.3.用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)”…“即要证”…“就要证”等分析得到一个明显成立的结论P,再说明所要证明的数学问题成立.失误防范1.反证法证明中要注意的问题(1)必须先否定结论,即肯定结论的反面,当结论的反面呈现多样性时,必须罗列出各种可能结论,缺少任何一种可能,反证都是不完全的;(2)反证法必须从否定结论进行推理,即应把结论的反面作为条件,且必须根据这一条件进行推证,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法;(3)推导出的矛盾
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 制药厂生产卫生操作规程:19、生产区工作服清洗管理制度
- 职业卫生档案管理制度(标准版)
- 2026年甘肃省兰州社区工作者考试真题解析含答案
- 快递快递分拣传送带速度调试技师(初级)考试试卷及答案
- 译林版英语三年级下册Unit4 第1课时 Cartoon time分层作业(有答案)
- 网络口碑在汽车销售中的传播机制研究
- 金融风控技术手册(标准版)
- 合同管理法律风险防范
- 道路运输企业管理手册
- 企业合规审查与处理指南(标准版)
- 2026届湖南省长郡中学生物高三上期末学业质量监测模拟试题含解析
- 2025eber原位杂交检测技术专家共识解读 (1)课件
- 2026年抖音小店开店运营实操指南
- 老年友善医院创建-社区卫生服务中心员工手册
- 古罗马公共建筑与政治象征
- 加油站反恐应急预案(3篇)
- 农小蜂-2025年中国大豆进出口贸易数据分析简报
- 宫腔镜手术围手术期护理
- 2024年中考历史真题解析(安徽试卷)
- 2025美国急性冠脉综合征(ACS)患者管理指南解读课件
- 山东省临沂市蒙阴县2024-2025学年五年级上学期1月期末英语试题
评论
0/150
提交评论