版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高考数学总复习第5课时椭圆文B-A3演示文稿设计与制作第5课时椭圆考点探究·挑战高考考向瞭望·把脉高考双基研习·面对高考第5课时双基研习·面对高考1.椭圆的定义平面内到两个定点F1,F2的距离之____等于常数(____________)的点的集合叫做椭圆,这两个定点F1,F2叫做椭圆的_______,两焦点F1,F2间的距离叫做椭圆的_______.和大于|F1F2|焦点焦距基础梳理思考感悟在椭圆的定义中,若2a=|F1F2|或2a<|F1F2|,动点P的轨迹如何?提示:当2a=|F1F2|时动点的轨迹是线段F1F2;当2a<|F1F2|时动点的轨迹是不存在的.2.椭圆的标准方程及其简单几何性质条件2a>2c,a2=b2+c2,a>0,b>0,c>0x轴y轴、原点y轴、原点x轴±a,00,±b0,±a±b,0±c,00,±c2ca2-b2(0,1)条件2a>2c,a2=b2+c2,a>0,b>0,c>0答案:D课前热身答案:D答案:C答案:2
120°考点探究·挑战高考椭圆的定义考点一考点突破由椭圆的定义可知在平面内与两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,可以将椭圆上的点到两个焦点的距离进行转化,从而解决有关线段长度的问题.一般地,遇到与焦点距离有关的问题时,首先应考虑用定义来解题.已知圆(x+2)2+y2=36的圆心为M,设A为圆上任一点,N(2,0),线段AN的垂直平分线交MA于点P,则动点的轨迹是(
)A.圆B.椭圆C.双曲线D.抛物线例1【思路分析】利用垂直平分线的性质得PA=PN.【解析】如图,连结PN则|PN|=|PA|,∴|PM|+|PN|=|PM|+|PA|=r=6,而6>4,∴P点轨迹是椭圆.故选B.【答案】
B【方法指导】平面内一动点与两个定点F1、F2的距离之和等于常数2a,当2a>|F1F2|时,动点的轨迹是椭圆;当2a=|F1F2|时,动点的轨迹是线段F1F2;当2a<|F1F2|时,轨迹不存在.求椭圆的标准方程考点二确定椭圆标准方程包括“定位”和“定量”两个方面,“定位”是指确定椭圆与坐标系的相对位置,在中心为原点的前提下,确定焦点位于哪条坐标轴上,以判断方程的形式;“定量”是指确定a2,b2的具体数值,常用待定系数法.例2【思路分析】由已知条件设出椭圆的标准方程,解方程(组),用待定系数法求解,应注意处理椭圆焦点位置不确定时的情况.【名师点评】一般求已知曲线类型的曲线方程问题,通常用待定系数法,可采用“先定形,后定式,再定量”的步骤:(1)定形——指的是二次曲线的焦点位置与对称轴的位置;(2)定式——根据“形”设方程的形式,注意曲线方程的应用,如当椭圆的焦点不确定在哪个坐标轴上时,可设方程为mx2+ny2=1(m>0,n>0);(3)定量——由题设中的条件找到“式”中待定系数的等量关系,通过解方程(组)得到量的大小.1.椭圆的几何性质分类.(1)第一类:与坐标系无关的椭圆本身固有的性质,如长轴长2a,短轴长2b,焦距2c,离心率e等;(2)第二类:与坐标系有关的性质,如顶点坐标、焦点坐标等.2.椭圆的离心率e与a、b的关系.考点三椭圆的几何性质例3【思路分析】
设M(x,y),由题意将x表示为关于e的不等式,根据椭圆上的点的取值范围得到关于e的不等式,即可得.【思维总结】椭圆的几何性质主要是围绕椭圆中的“六点”(两个焦点、四个顶点),“二线”(两条对称轴),“两形”(中心、焦点以及短轴端点构成的三角形、椭圆上一点和两焦点构成的三角形),“两围”(x的范围,y的范围).互动探究本例中若M点在椭圆内部,其他条件不变,试求之.考点四直线与椭圆的位置关系(1)Δ>0,直线与椭圆相交,有两个公共点.(2)Δ=0,直线与椭圆相切,有一个公共点.(3)Δ<0,直线与椭圆相离,无公共点.2.直线被椭圆截得的弦长公式.(2010年高考福建卷)已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.(1)求椭圆C的方程;(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,说明理由.【思路分析】
(1)利用待定系数法求方程,(2)先设直线方程,代入值,利用判别式求其范围.例4【方法指导】用方程法研究直线与椭圆的位置关系时,针对由方程组转化的一元二次方程,既可以考虑解方程,但更多的是利用根与系数的关系转化为待求的系数方程,即设出交点坐标但不具体求出.方法感悟3.求椭圆离心率e时,只要求出a,b,c的一个齐次方程,再结合b2=a2-c2就可求得e(0<e<1)(如例3).4.求椭圆方程时,常用待定系数法,但首先要判断是否为标准方程,判断的依据是:(1)中心是否在原点,(2)对称轴是否为坐标轴(如例2(1)等).失误防范1.判断两种标准方程的方法为比较标准形式中x2与y2的分母大小,若x2的分母比y2的分母大,则焦点在x轴上,若x2的分母比y2的分母小,则焦点在y轴上.考向瞭望·把脉高考考情分析从近几年的高考试题来看,椭圆的定义,椭圆的几何性质,直线与椭圆的位置关系,求椭圆的标准方程是高考的热点,题型既有选择题、填空题,又有解答题,难度属中等偏高,部分解答题为较难题目.客观题主要考查对椭圆的基本概念与性质的理解及应用;主观题考查较为全面,在考查对椭圆基本概念与性质的理解及应用的同时,又考查直线与圆锥曲线的位置关系,考查学生分析问题、解决问题的能力、运算能力以及数形结合思想.预测2012年高考仍将以椭圆的定义,性质和直线与椭圆的位置关系为主要考点,重点考查运算能力与逻辑推理能力.规范解答例名师预测感谢观看谢谢大家A3演示文稿设计与制作信息技术2.0微能力认证作业中小学教师继续教育参考资料高考数学总复习第课时直接证明与间接证明文-A3演示文稿设计与制作第6课时直接证明与间接证明第6课时直接证明与间接证明考点探究·挑战高考考向瞭望·把脉高考温故夯基·面对高考温故夯基·面对高考证明的结论推理论证成立充分条件内容综合法分析法文字语言因为…所以…或由…得…要证…只需证即证…思考感悟综合法和分析法的区别与联系是什么?提示:综合法的特点是:从“已知”看“可知”,逐步推向“未知”.其逐步推理实际上是寻找它的必要条件.分析法的特点是:从“未知”看“需知”,逐步靠拢“已知”.其逐步推理实际上是寻求它的充分条件.在解决问题时,经常把综合法和分析法综合起来使用.2.间接证明反证法:假设原命题_______
(即在原命题的条件下,结论不成立),经过正确的推理,最后得出_____.因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.不成立矛盾考点探究·挑战高考综合法考点一考点突破综合法是“由因导果”,它是从已知条件出发,顺着推证,经过一系列的中间推理,最后导出所证结论的真实性.用综合法证明的逻辑关系是:A⇒B1⇒B2⇒…⇒Bn⇒B(A为已知条件或数学定义、定理、公理等,B为要证结论),它的常见书面表达是“∵,∴”或“⇒”.例1分析法考点二分析法是“执果索因”,一步步寻求上一步成立的充分条件.它是从要求证的结论出发,倒着分析,由未知想需知,由需知逐渐地靠近已知(已知条件,已经学过的定义、定理、公理、公式、法则等).用分析法证明命题的逻辑关系是:B⇐B1⇐B2⇐…⇐Bn⇐A.它的常见书面表达是“要证……只需……”或“⇐”.例2【思路分析】
ab⇔a·b=0,利用a2=|a|2求证.平方得|a|2+|b|2+2|a||b|≤2(|a|2+|b|2-2a·b),只需证|a|2+|b|2-2|a||b|≥0,即(|a|-|b|)2≥0,显然成立.故原不等式得证.【误区警示】本题从要证明的结论出发,探求使结论成立的充分条件,最后找到的恰恰都是已证的命题(定义、公理、定理、法则、公式等)或要证命题的已知条件时,命题得证.这正是分析法证明问题的一般思路.一般地,含有根号、绝对值的等式或不等式,若从正面不易推导时,可以考虑用分析法.反证法考点三反证法体现了正难则反的思维方法,用反证法证明问题的一般步骤是:(1)分清问题的条件和结论;(2)假定所要证的结论不成立,而设结论的反面成立(否定结论);(3)从假设和条件出发,经过正确的推理,导出与已知条件、公理、定理、定义及明显成立的事实相矛盾或自相矛盾(推导矛盾);(4)因为推理正确,所以断定产生矛盾的原因是“假设”错误.既然结论的反面不成立,从而证明了原结论成立(结论成立).例3【思路分析】
(1)利用求和公式先求公差d,(2)利用反证法证明.【名师点评】当一个命题的结论是以“至多”、“至少”、“唯一”或以否定形式出现时,宜用反证法来证,反证法的关键是在正确的推理下得出矛盾,矛盾可以是与已知条件矛盾,与假设矛盾,与定义、公理、定理矛盾,与事实矛盾等,反证法常常是解决某些“疑难”问题的有力工具,是数学证明中的一件有力武器.方法感悟方法技巧1.分析法和综合法各有优缺点.分析法思考起来比较自然,容易寻找到解题的思路和方法,缺点是思路逆行,叙述较繁琐;综合法从条件推出结论,较简洁地解决问题,但不便于思考.实际证题时常常两法兼用,先用分析法探索证明途径,然后再用综合法叙述出来.2.利用反证法证明数学问题时,要假设结论错误,并用假设命题进行推理,没有用假设命题推理而推出矛盾结果,其推理过程是错误的.3.用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)”…“即要证”…“就要证”等分析得到一个明显成立的结论P,再说明所要证明的数学问题成立.失误防范1.反证法证明中要注意的问题(1)必须先否定结论,即肯定结论的反面,当结论的反面呈现多样性时,必须罗列出各种可能结论,缺少任何一种可能,反证都是不完全的;(2)反证法必须从否定结论进行推理,即应把结论的反面作为条件,且必须根据这一条件进行推证,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法;(3)推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与事实矛盾等,推导出的矛盾必须是明显的.2.常见的“结论词”与“反设词”原结论词反设词原结论词反设词至少有一个一个也没有对所有x成立存在某个x不成立至多有一个至少有两个对任意x不成立存在某个x成立至少有n个至多有n-1个p或q綈p且綈q至多有n个至少有n+1个p且q綈p或綈q考向瞭望·把脉高考考情分析从近几年的高考试题来看,综合法、反证法证明问题是高考的热点,题型大多为解答题,难度为中、高档;主要是在知识交汇点处命题,像数列,立体几何中的平行、垂直,不等式,解析几何等都有可能考查,在考查数学基本概念的同时,注重考查等价转化、分类讨论思想以及学生的逻辑推理能力.预测2012年广东高考仍将以综合法证明为主要考点,偶尔会出现反证法证明的题目,重点考查
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版癫痫病常见症状说明及护理建议培训
- 2025年通化县供销联社公开招聘考试笔试备考题库及答案解析
- 2025年伊通满族自治县事业单位引进人才(76人)考试笔试备考试题及答案解析
- 2025西安鄠邑区秦渡中心卫生院牛东分院招聘考试笔试备考试题及答案解析
- 2025湖南株洲市茶陵县茶陵湘剧保护传承中心招聘5人笔试考试参考试题及答案解析
- 2025版哮喘常见症状及护理建议
- 2025版高血脂病症状及护理指南
- 2026上半年云南普洱市勐马镇征兵笔试考试备考题库及答案解析
- 2025版抑郁症常见症状及护理指引
- 2025福建省人资集团漳州地区招聘工作人员2人笔试考试备考题库及答案解析
- 2025年12月“第一议题”学习内容清单
- 2025年高考化学习题分类练:化学反应机理的探究
- 2025年关于意识形态工作自检自查报告
- 观赏鸟的营养需要
- 财税托管托管合同范本
- 发现自己的闪光点课件
- 2025建筑节能工程监理实施细则
- 2025-2026学年苏教版(新教材)小学科学三年级上册科学期末复习卷及答案
- 发电厂汽轮机副操岗位考试试卷及答案
- 阿里合伙人合同
- 雨课堂在线学堂《临床中成药应用》作业单元考核答案
评论
0/150
提交评论