版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省衡阳市常宁兴尢学校高三数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.复数(i为虚数单位)的虚部为(
)A. B. C. D.参考答案:B【分析】先化简复数,再根据虚数概念求解.【详解】因为,所以虚部为故选B【点睛】本题考查复数运算以及虚数概念,考查基本分析求解能力,属基础题.2.设为的边上一点,为内一点,且满足,,则
(
)A. B.
C.
D.参考答案:B3.设函数,集合为函数的定义域,集合,则图中阴影部分表示的集合为(
)A.
B.
C.
D.参考答案:D考点:集合的交集补集运算.4.下列函数中,既是奇函数又存在极值的是(
)A.
B. C.
D.
参考答案:D【知识点】利用导数研究函数的极值;函数奇偶性的性质解析:由题可知,B、C选项不是奇函数,A选项单调递增(无极值),而D选项既为奇函数又存在极值.故选D.【思路点拨】根据奇函数、存在极值的条件,即可得出结论.
5.的外接圆圆心为,半径为2,,且,方向上的投影为
(
)
A.
B.
C.
D.参考答案:C由得,所以四边形为平行四边形。又,所以三角形为正三角形,因为外接圆的半径为2,所以四边形为边长为2的菱形。所以,所以在的投影为,选C.6.设等比数列的公比,前n项和为,则(
)A.
B.
C.2
D.4参考答案:A略7.如图所示,由抛物线y2=x和直线x=1所围成的图形的面积等于()A.1 B. C. D.参考答案:B【考点】定积分.【分析】首先利用定积分的几何意义表示阴影部分的面积,然后计算定积分即可.【解答】解:由抛物线y2=x和直线x=1所围成的图形的面积等于=2×|=;故选:B8.若,,,则a,b,c的大小关系是(
)A. B. C. D.参考答案:B,,,∴.9.若,对任意实数t都有,且,则实数m的值等于A..±1
B.±3
C.-1或3
D.-3或1参考答案:D10.设命题p:?x>0,x﹣lnx>0,则¬p为()A.?x>0,x﹣lnx≤0 B.?x>0,x﹣lnx<0C.?x0>0,x0﹣lnx0>0 D.?x0>0,x0﹣lnx0≤0参考答案:D【考点】命题的否定.【分析】直接利用全称命题的否定是特称命题写出结果即可.【解答】解:因为全称命题的否定是特称命题,所以命题“?x>0,x﹣lnx>0”的否定是?x>0,x﹣lnx≤0.故选:D.二、填空题:本大题共7小题,每小题4分,共28分11.已知x>0,y>0,x+2y+2xy=8,则x+2y的最小值是
.参考答案:4【考点】基本不等式;简单线性规划的应用.【分析】首先分析题目由已知x>0,y>0,x+2y+2xy=8,求x+2y的最小值,猜想到基本不等式的用法,利用a+b≥2代入已知条件,化简为函数求最值.【解答】解:考察基本不等式x+2y=8﹣x?(2y)≥8﹣()2(当且仅当x=2y时取等号)整理得(x+2y)2+4(x+2y)﹣32≥0即(x+2y﹣4)(x+2y+8)≥0,又x+2y>0,所以x+2y≥4(当且仅当x=2y时取等号)则x+2y的最小值是4故答案为:4.12.已知函数y=f(x)的图像是开口向下的抛物线,且对任意x∈R,都有f(1-x)=f(1+x),若向量,则满足不等式的实数m的取值范围是
。参考答案:略13.等差数列中,,则的前7项和
.参考答案:14.如图,在△ABC中,AB=AC,BC=2,,,若,则=.参考答案:考点:向量在几何中的应用.专题:计算题;平面向量及应用.分析:以BC的中点O为原点,建立如图所示直角坐标系,可得B(﹣1,0),C(1,0).设A(0,m),从而算出向量的坐标关于m的式子,由建立关于m的方程,解出m=2.由此算出的坐标,从而可得的值.解答:解:以BC的中点O为原点,BC所在直线为x轴建立直角坐标系,如图所示.则B(﹣1,0),C(1,0),设A(0,m),由题意得D(,),E(,),∴=(,),=(1,﹣m),∵,∴×1+×(﹣m)=﹣,解之得m=2(负值舍去)由此可得E(,),=(﹣,),=(﹣1,﹣2)∴=﹣×(﹣1)+×(﹣2)=﹣.故答案为:﹣点评:本题给出等腰三角形的底面长,在已知两个向量的数量积的情况下求另外向量的数量积.着重考查了等腰三角形的性质、向量的数量积公式和向量的坐标运算等知识,属于中档题.15.某少数民族的刺绣有着悠久的历史,下图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第个图形包含个小正方形,则=____________.参考答案:116.将函数的图像按向量()平移,所得图像对应的函数为偶函数,则的最小值为
.参考答案:由题意知,按平移,得到函数,即,此时函数为偶函数,所以,所以,所以当时,的最小值为。17.已知定义在R上的函数满足条件,且函数是奇函数,给出以下四个命题:
①函数是周期函数;②函数的图象关于点对称;③函数是偶函数;④函数在R上是单调函数.在上述四个命题中,正确命题的序号是__________(写出所有正确命题的序号)。参考答案:①②③三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级800名学生中随机抽取100名学生进行测试,并将其成绩分为A、B、C、D、E五个等级,统计数据如图所示(视频率为概率),根据以上抽样调查数据,回答下列问题:(1)试估算该校高三年级学生获得成绩为B的人数;(2)若等级A、B、C、D、E分别对应100分、90分、80分、70分、60分,学校要求平均分达90分以上为“考前心理稳定整体过关”,请问该校高三年级目前学生的“考前心理稳定整体”是否过关?(3)为了解心理健康状态稳定学生的特点,现从A、B两种级别中,用分层抽样的方法抽取11个学生样本,再从中任意选取3个学生样本分析,求这3个样本为A级的个数的分布列与数学期望.参考答案:(1)从条形图中可知这人中,有名学生成绩等级为,所以可以估计该校学生获得成绩等级为的概率为,则该校高三年级学生获得成绩为的人数约有.(2)这名学生成绩的平均分为,因为,所以该校高三年级目前学生的“考前心理稳定整体”已过关.(3)由题可知用分层抽样的方法抽取个学生样本,其中级个,级个,从而任意选取个,这个为级的个数的可能值为,,,.则,,,.因此可得的分布列为:则.19.如图,在直三棱柱中,,点分别为和的中点.(1)证明:平面;(2)平面MNC与平面MAC夹角的余弦值.参考答案:由题意知,点分别为和的中点,∴,又平面,平面,∴平面.(2)以点为坐标原点,分别以直线为轴,轴,轴,建立空间直角坐标系,如图所示,于是,∵平面,∴,∵为正方形,∴平面,∴是平面的一个法向量,,设平面的法向量为,,,,,令,∴,略20.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,,AD=AC=1,O为AC的中点,PO平面ABCD,PO=2,M为PD的中点。(1)证明:PB//平面ACM;(2)证明:AD平面PAC(3)求直线AM与平面ABCD所成角的正切值。参考答案:考点:空间的角垂直平行试题解析:(1)证明:为AC的中点,即O为BD的中点,且M为PD的中点,又平面ACM,平面ACM,所以PB//平面ACM。(2)证明:因为,AD=AC,所以,所以,又PO平面ABCD,所以所以AD平面PAC。(3)取OD的中点为N,因为所以MN平面ABCD,所以为直线AM与平面ABCD所成角。因为AD=AC=1,,所以所以又所以21.已知定义域为R的函数是奇函数.(1)求的值;(2)用定义证明在上为减函数.(3)若对于任意,不等式恒成立,求的范围.参考答案:(1)
经检验符合题意.
(2)任取
则=
(3)
,不等式恒成立,
为奇函数,为减函数,即恒成立,而
(2)定义域关于原点对称,且,所以为奇函数.
(3)当
,又
所以相等.22.如图,四边形ABCD为矩形,PD⊥平面ABCD,PD=DC=2,BC=,E是PC的中点.(Ⅰ)证明:PA∥平面EDB;(Ⅱ)求异面直线AD与BE所成角的大小.
参考答案:证明:(Ⅰ)连接AC,设AC∩BD=O,连接EO,∵四边形ABCD为矩形,∴O为AC的中点.∴OE为△PAC的中位线.
∴PA∥OE,而OE平面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论