版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学必求其心得,业必贵于专精学必求其心得,业必贵于专精学必求其心得,业必贵于专精2016—2017学年安徽省亳州市涡阳一中高二(下)3月月考数学试卷(理科)一.选择题(本大题共12小题,每小题5分,共60分.每小题只有1个答案正确)1.有一段“三段论"推理是这样的:对于可导函数f(x),如果f′(x0)=0,那么x=x0是函数f(x)的极值点,因为函数f(x)=x3在x=0处的导数值f′(0)=0,所以,x=0是函数f(x)=x3的极值点.以上推理中()A.大前提错误 B.小前提错误 C.推理形式错误 D.结论正确2.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,假设正确的是()A.假设三内角都不大于60度B.假设三内角都大于60度C.假设三内角至多有一个大于60度D.假设三内角至多有两个大于60度3.某个命题与自然数n有关,若n=k(k∈N*)时命题成立,那么可推得当n=k+1时该命题也成立.现已知当n=5时,该命题不成立,那么可推得()A.当n=6时,该命题不成立 B.当n=6时,该命题成立C.当n=4时,该命题不成立 D.当n=4时,该命题成立4.若f(x)在R上可导,,则=()A. B. C. D.5.在平面几何中有如下结论:正三角形ABC的内切圆面积为S1,外接圆面积为S2,则=,推广到空间可以得到类似结论,已知正四面体P﹣ABC的内切球体积为V1,外接球体积为V2,则=()A. B. C. D.6.函数y=sinx﹣的图象大致是()A. B. C. D.7.,则m等于()A.﹣1 B.0 C.1 D.28.如图所示的是函数f(x)=x3+bx2+cx+d的大致图象,则x12+x22等于()A. B. C. D.9.正整数按下表的规律排列(下表给出的是上起前4行和左起前4列)则上起第2015行,左起第2016列的数应为()A.20152 B.20162 C.2015+2016 D.2015×201610.设f(x)是定义在R上的偶函数,当x>0时,f(x)+xf′(x)>0,且f(1)=0,则不等式xf(x)>0的解集为()A.(﹣1,0)∪(1,+∞) B.(﹣1,0)∪(0,1) C.(﹣∞,﹣1)∪(1,+∞) D.(﹣∞,﹣1)∪(0,1)11.若点P是曲线y=x2﹣lnx上任意一点,则点P到直线y=x﹣2的最小距离为()A.1 B. C. D.12.关于函数f(x)=+lnx,下列说法错误的是()A.x=2是f(x)的极小值点B.函数y=f(x)﹣x有且只有1个零点C.存在正实数k,使得f(x)>kx恒成立D.对任意两个正实数x1,x2,且x2>x1,若f(x1)=f(x2),则x1+x2>4二、填空题(本大题共4题,每题5分,共20分)13.设f(x)=x2﹣2x﹣4lnx,则函数f(x)单调递增区间是.14.如图,函数F(x)=f(x)+x2的图象在点P处的切线方程是y=﹣x+8,则f(5)+f′(5)=.15.已知函数f(x)=2ax﹣,x∈(0,1].若函数f(x)在(0,1]上是增函数,则实数a的取值范围是.16.已知函数f(x)的定义域为[﹣1,5],部分对应值如下表.x﹣1045f(x)1221f(x)的导函数y=f′(x)的图象如图所示:下列关于f(x)的命题:①函数f(x)是周期函数;②函数f(x)在[0,2]是减函数;③如果当x∈[﹣1,t]时,f(x)的最大值是2,那么t的最大值为4;④当1<a<2时,函数y=f(x)﹣a有4个零点;⑤函数y=f(x)﹣a的零点个数可能为0、1、2、3、4个.其中正确命题的序号是.三、解答题(本大题共6题,第17题10分,其余每题12分,共70分.解答题应写出文字说明、证明过程或演算步骤.)17.已知a>b>c,且a+b+c=0,求证:<.18.已知函数f(x)=x3﹣3x(1)求函数f(x)的极值;(2)过点P(2,﹣6)作曲线y=f(x)的切线,求此切线的方程.19.设函数f(x)=x2+ex﹣xex(1)求f(x)的单调区间;(2)若当x∈[﹣2,2]时,不等式f(x)>m恒成立,求实数m的取值范围.20.已知数列{an}满足an+1﹣an=1,a1=1,试比较与的大小并证明.21.已知函数f(x)=lnx﹣.(Ⅰ)若a>0,试判断f(x)在定义域内的单调性;(Ⅱ)若f(x)在[1,e]上的最小值为,求实数a的值;(Ⅲ)若f(x)<x2在(1,+∞)上恒成立,求实数a的取值范围.22.设函数f(x)=lnx﹣ax+﹣1(0<a<1)(1)求函数f(x)的单调区间;(2)当a=时,设函数g(x)=x2﹣2bx﹣,若对于∀x1∈[1,2],∃x2∈[0,1],使f(x1)≥g(x2)成立,求实数b的取值范围.
2016-2017学年安徽省亳州市涡阳一中高二(下)3月月考数学试卷(理科)参考答案与试题解析一.选择题(本大题共12小题,每小题5分,共60分。每小题只有1个答案正确)1.有一段“三段论”推理是这样的:对于可导函数f(x),如果f′(x0)=0,那么x=x0是函数f(x)的极值点,因为函数f(x)=x3在x=0处的导数值f′(0)=0,所以,x=0是函数f(x)=x3的极值点.以上推理中()A.大前提错误 B.小前提错误 C.推理形式错误 D.结论正确【考点】F6:演绎推理的基本方法.【分析】在使用三段论推理证明中,如果命题是错误的,则可能是“大前提”错误,也可能是“小前提"错误,也可能是推理形式错误,我们分析的其大前提的形式:“对于可导函数f(x),如果f'(x0)=0,那么x=x0是函数f(x)的极值点",不难得到结论.【解答】解:∵大前提是:“对于可导函数f(x),如果f'(x0)=0,那么x=x0是函数f(x)的极值点”,不是真命题,因为对于可导函数f(x),如果f’(x0)=0,且满足当x=x0附近的导函数值异号时,那么x=x0是函数f(x)的极值点,∴大前提错误,故选A.2.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,假设正确的是()A.假设三内角都不大于60度B.假设三内角都大于60度C.假设三内角至多有一个大于60度D.假设三内角至多有两个大于60度【考点】R9:反证法与放缩法.【分析】一些正面词语的否定:“是”的否定:“不是”;“能”的否定:“不能”;“都是”的否定:“不都是”;“至多有一个"的否定:“至少有两个”;“至少有一个”的否定:“一个也没有”;“是至多有n个”的否定:“至少有n+1个”;“任意的”的否定:“某个";“任意两个”的否定:“某两个";“所有的"的否定:“某些”.【解答】解:根据反证法的步骤,假设是对原命题结论的否定,“至少有一个”的否定:“一个也没有”;即“三内角都大于60度”.故选B3.某个命题与自然数n有关,若n=k(k∈N*)时命题成立,那么可推得当n=k+1时该命题也成立.现已知当n=5时,该命题不成立,那么可推得()A.当n=6时,该命题不成立 B.当n=6时,该命题成立C.当n=4时,该命题不成立 D.当n=4时,该命题成立【考点】RG:数学归纳法.【分析】本题考查的知识点是数学归纳法,由归纳法的性质,我们由P(n)对n=k成立,则它对n=k+1也成立,由此类推,对n>k的任意整数均成立,结合逆否命题同真同假的原理,当P(n)对n=k不成立时,则它对n=k﹣1也不成立,由此类推,对n<k的任意正整数均不成立,由此不难得到答案.【解答】解:由题意可知,P(n)对n=4不成立(否则n=5也成立).同理可推得P(n)对n=3,n=2,n=1也不成立.故选C4.若f(x)在R上可导,,则=()A. B. C. D.【考点】67:定积分.【分析】先求导,再求导,求出函数的表达式,再根据定积分的计算法则计算即可.【解答】解:f′(x)=2x+2f′()+2cos2x,∴f′()=2×+2f′()+2cosπ,∴f′()=2﹣π,∴f(x)=x2+2(2﹣π)x+sin2x,∴f(x)dx=(x2+2(2﹣π)x+sin2x)dx=(x3+(2﹣π)x2﹣cos2x)|=(+2﹣π﹣cos2)﹣(0+0﹣)=﹣π﹣cos2,故选:C5.在平面几何中有如下结论:正三角形ABC的内切圆面积为S1,外接圆面积为S2,则=,推广到空间可以得到类似结论,已知正四面体P﹣ABC的内切球体积为V1,外接球体积为V2,则=()A. B. C. D.【考点】F3:类比推理.【分析】平面图形类比空间图形,二维类比三维得到,类比平面几何的结论,确定正四面体的外接球和内切球的半径之比,即可求得结论.【解答】解:从平面图形类比空间图形,从二维类比三维,如图,设正四面体的棱长为a,则AE=,DE=设OA=R,OE=r,则∴R=,r=∴正四面体的外接球和内切球的半径之比是3:1故正四面体P﹣ABC的内切球体积为V1,外接球体积为V2之比等于故选C6.函数y=sinx﹣的图象大致是()A. B. C. D.【考点】6B:利用导数研究函数的单调性;3O:函数的图象.【分析】判断函数的奇偶性,通过函数的导数,判断函数的单调性,利用特殊函数值判断图象即可.【解答】解:函数y=sinx﹣是奇函数,排除D,函数y′=cosx+,x∈(0,)时,y′>0,函数是增函数,排除A,并且x=时,y=1﹣>0,排除C,故选:B.7.,则m等于()A.﹣1 B.0 C.1 D.2【考点】67:定积分.【分析】利用定积分的几何意义计算定积分.【解答】解:y=,即(x+1)2+y2=1,表示以(﹣1,0)为圆心,以1为半径的圆,圆的面积为π,∵,∴表示为圆的面积的二分之一,∴m=0,故选:B8.如图所示的是函数f(x)=x3+bx2+cx+d的大致图象,则x12+x22等于()A. B. C. D.【考点】63:导数的运算;36:函数解析式的求解及常用方法;7H:一元二次方程的根的分布与系数的关系.【分析】由图象知f(x)=0的根为0,1,2,求出函数解析式,x1,x2为导函数的两根,可结合根与系数求解.【解答】解:由图象知f(x)=0的根为0,1,2,∴d=0.∴f(x)=x3+bx2+cx=x(x2+bx+c)=0.∴x2+bx+c=0的两个根为1和2.∴b=﹣3,c=2.∴f(x)=x3﹣3x2+2x.∴f′(x)=3x2﹣6x+2.∵x1,x2为3x2﹣6x+2=0的两根,∴.∴.9.正整数按下表的规律排列(下表给出的是上起前4行和左起前4列)则上起第2015行,左起第2016列的数应为()A.20152 B.20162 C.2015+2016 D.2015×2016【考点】F1:归纳推理.【分析】观察图形可知这些数字排成的是一个正方形,上起第2015行,左起第2016列的数是一个2016乘以2016的正方形的倒数第二行的最后一个数字,进而可得答案【解答】解:这些数字排成的是一个正方形上起第2015行,左起第2016列的数是一个2016乘以2016的正方形的倒数第二行的最后一个数字,所以这个数是2016×=2015×2016.故选:D10.设f(x)是定义在R上的偶函数,当x>0时,f(x)+xf′(x)>0,且f(1)=0,则不等式xf(x)>0的解集为()A.(﹣1,0)∪(1,+∞) B.(﹣1,0)∪(0,1) C.(﹣∞,﹣1)∪(1,+∞) D.(﹣∞,﹣1)∪(0,1)【考点】3L:函数奇偶性的性质;6B:利用导数研究函数的单调性.【分析】由题意构造函数g(x)=xf(x),再由导函数的符号判断出函数g(x)的单调性,由函数f(x)的奇偶性得到函数g(x)的奇偶性,由f(1)=0得g(1)=0、还有g(﹣1)=0,再通过奇偶性进行转化,利用单调性求出不等式得解集.【解答】解:设g(x)=xf(x),则g’(x)=[xf(x)]’=x'f(x)+xf’(x)=xf′(x)+f(x)>0,∴函数g(x)在区间(0,+∞)上是增函数,∵f(x)是定义在R上的偶函数,∴g(x)=xf(x)是R上的奇函数,∴函数g(x)在区间(﹣∞,0)上是增函数,∵f(1)=0,∴f(﹣1)=0;即g(﹣1)=0,g(1)=0∴xf(x)>0化为g(x)>0,设x>0,故不等式为g(x)>g(1),即1<x;设x<0,故不等式为g(x)>g(﹣1),即﹣1<x<0.故所求的解集为(﹣1,0)∪(1,+∞)故选A.11.若点P是曲线y=x2﹣lnx上任意一点,则点P到直线y=x﹣2的最小距离为()A.1 B. C. D.【考点】IT:点到直线的距离公式.【分析】设出切点坐标,利用导数在切点处的函数值,就是切线的斜率,求出切点,然后再求点P到直线y=x﹣2的最小距离.【解答】解:过点P作y=x﹣2的平行直线,且与曲线y=x2﹣lnx相切,设P(x0,x02﹣lnx0)则有k=y′|x=x0=2x0﹣.∴2x0﹣=1,∴x0=1或x0=﹣(舍去).∴P(1,1),∴d==.故选B.12.关于函数f(x)=+lnx,下列说法错误的是()A.x=2是f(x)的极小值点B.函数y=f(x)﹣x有且只有1个零点C.存在正实数k,使得f(x)>kx恒成立D.对任意两个正实数x1,x2,且x2>x1,若f(x1)=f(x2),则x1+x2>4【考点】6B:利用导数研究函数的单调性.【分析】对选项分别进行判断,即可得出结论.【解答】解:f′(x)=,∴(0,2)上,函数单调递减,(2,+∞)上函数单调递增,∴x=2是f(x)的极小值点,即A正确;y=f(x)﹣x=+lnx﹣x,∴y′=<0,函数在(0,+∞)上单调递减,x→0,y→+∞,∴函数y=f(x)﹣x有且只有1个零点,即B正确;f(x)>kx,可得k<,令g(x)=,则g′(x)=,令h(x)=﹣4+x﹣xlnx,则h′(x)=﹣lnx,∴(0,1)上,函数单调递增,(1,+∞)上函数单调递减,∴h(x)≤h(1)<0,∴g′(x)<0,∴g(x)=在(0,+∞)上函数单调递减,函数无最小值,∴不存在正实数k,使得f(x)>kx恒成立,即C不正确;对任意两个正实数x1,x2,且x2>x1,(0,2)上,函数单调递减,(2,+∞)上函数单调递增,若f(x1)=f(x2),则x1+x2>4,正确.故选:C.二、填空题(本大题共4题,每题5分,共20分)13.设f(x)=x2﹣2x﹣4lnx,则函数f(x)单调递增区间是[2,+∞).【考点】6B:利用导数研究函数的单调性.【分析】先求函数的定义域,再求导数,令导数大于0,解得x的范围即为函数的单调增区间.【解答】解:函数f(x)=x2﹣2x﹣4lnx的定义域为(0,+∞),f′(x)=2x﹣2﹣=,令f′(x)>0,∵x>0,解得,x>2,∴函数的单调增区间为[2,+∞),故答案为:[2,+∞).14.如图,函数F(x)=f(x)+x2的图象在点P处的切线方程是y=﹣x+8,则f(5)+f′(5)=﹣5.【考点】6H:利用导数研究曲线上某点切线方程;3T:函数的值.【分析】根据切点在函数F(x)的图象上,求出切点坐标,然后求出函数F(x)的导函数F’(x),根据F'(5)=﹣1求出f′(5),从而求出所求.【解答】解:F(5)=f(5)+5=﹣5+8=3,所以f(5)=﹣2.又F′(x)=f′(x)+x,所以F′(5)=f′(5)+×5=﹣1,解得f′(5)=﹣3,f(5)+f′(5)=﹣5.故答案为:﹣515.已知函数f(x)=2ax﹣,x∈(0,1].若函数f(x)在(0,1]上是增函数,则实数a的取值范围是a≥﹣1.【考点】6B:利用导数研究函数的单调性.【分析】求导数,函数f(x)在(0,1]上是增函数,f′(x)=2a+≥0在(0,1]上恒成立,分离参数求最值,即可求出实数a的取值范围.【解答】解:由题意,∵f(x)=2ax﹣,∴f′(x)=2a+,∵函数f(x)在(0,1]上是增函数,∴f′(x)=2a+≥0在(0,1]上恒成立,∴2a≥﹣在(0,1]上恒成立,∴2a≥﹣2,∴a≥﹣1.故答案为:a≥﹣1.16.已知函数f(x)的定义域为[﹣1,5],部分对应值如下表.x﹣1045f(x)1221f(x)的导函数y=f′(x)的图象如图所示:下列关于f(x)的命题:①函数f(x)是周期函数;②函数f(x)在[0,2]是减函数;③如果当x∈[﹣1,t]时,f(x)的最大值是2,那么t的最大值为4;④当1<a<2时,函数y=f(x)﹣a有4个零点;⑤函数y=f(x)﹣a的零点个数可能为0、1、2、3、4个.其中正确命题的序号是②⑤.【考点】6E:利用导数求闭区间上函数的最值;3Q:函数的周期性;51:函数的零点;6B:利用导数研究函数的单调性.【分析】先由导函数的图象和原函数的关系画出原函数的大致图象,再借助与图象和导函数的图象,对五个命题,一一进行验证,对于假命题采用举反例的方法进行排除即可得到答案.【解答】解:由导函数的图象和原函数的关系得,原函数的大致图象可由以下两种代表形式,如图:由图得:①为假命题.函数f(x)不能断定为是周期函数.②为真命题,因为在[0,2]上导函数为负,故原函数递减;③为假命题,当t=5时,也满足x∈[﹣1,t]时,f(x)的最大值是2;④为假命题,当a离1非常接近时,对于第二个图,y=f(x)﹣a有2个零点,也可以是3个零点.⑤为真命题,动直线y=a与y=f(x)图象交点个数可以为0、1、2、3、4个,故函数y=f(x)﹣a的零点个数可能为0、1、2、3、4个.综上得:真命题只有②⑤.故答案为:②⑤三、解答题(本大题共6题,第17题10分,其余每题12分,共70分.解答题应写出文字说明、证明过程或演算步骤.)17.已知a>b>c,且a+b+c=0,求证:<.【考点】R6:不等式的证明.【分析】本题宜用分析法证.欲证要证<a,平方后寻求使之成立的充分条件即可.【解答】证明:因为a>b>c,且a+b+c=0,所以a>0,c<0,要证明原不等式成立,只需证明<a,即证b2﹣ac<3a2,即证b2+a(a+b)<3a2,即证(a﹣b)(2a+b)>0,即证(a﹣b)(a﹣c)>0.∵a>b>c,∴(a﹣b)•(a﹣c)>0成立.∴原不等式成立.18.已知函数f(x)=x3﹣3x(1)求函数f(x)的极值;(2)过点P(2,﹣6)作曲线y=f(x)的切线,求此切线的方程.【考点】6D:利用导数研究函数的极值;6H:利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,通过导数为0,判断函数的单调性,然后求解函数的极值.(2)设出切点,求出斜率,然后求解切线方程.【解答】解:(1)∵f(x)=x3﹣3x,∴f'(x)=3x2﹣3=3(x﹣1)(x+1)…令f'(x)=0,解得x=﹣1或x=1…列表如下x(﹣∞,﹣1)﹣1(﹣1,1)1(1,+∞)f'(x)+0﹣0+f(x)↗极大值↘极小值↗…当x=﹣1时,有极大值f(﹣1)=2;当x=1时,有极小值f(1)=﹣2…(2)设切点,∴…∴切线方程…∵切线过点P(2,﹣6)∴,∴x°=0或x°=3…所以切线方程为y=﹣3x或y=24x﹣54…19.设函数f(x)=x2+ex﹣xex(1)求f(x)的单调区间;(2)若当x∈[﹣2,2]时,不等式f(x)>m恒成立,求实数m的取值范围.【考点】6B:利用导数研究函数的单调性;6K:导数在最大值、最小值问题中的应用.【分析】(1)求出导数,讨论x>0,x<0,导数的符号,注意运用指数函数的单调性,求出单调区间;(2)当x∈[﹣2,2]时,不等式f(x)>m恒成立,即为当x∈[﹣2,2]时,f(x)min>m,由(1)即可求出最小值.【解答】解:(1)∵函数f(x)=x2+ex﹣xex.∴f(x)的定义域为R,f’(x)=x+ex﹣(ex+xex)=x(1﹣ex),当x<0时,1﹣ex>0,f'(x)<0;当x>0时,1﹣ex<0,f’(x)<0∴f(x)在R上为减函数,即f(x)的单调递减区间为(﹣∞,+∞).(2)当x∈[﹣2,2]时,不等式f(x)>m恒成立,即为当x∈[﹣2,2]时,f(x)min>m.由(1)可知,f(x)在[﹣2,2]上单调递减,∴f(x)min=f(2)=2﹣e2,∴m<2﹣e2时,不等式f(x)>m恒成立.20.已知数列{an}满足an+1﹣an=1,a1=1,试比较与的大小并证明.【考点】RG:数学归纳法.【分析】先求出数列的通项公式,再利用数学归纳法证明即可【解答】解:an+1﹣an=1,a1=1,∴数列的通项公式为an=n,要证≥只要证1+++…+≥,下面用数学归纳法证明:(1)当n=1时,1+=,结论成立,(2)假设n=k时成立,即1++…+≥,则当n=k+1时,1++…+++…+>++…+,>+++…+,>+=,即当n=k+1时,结论成立,综上(1)(2)可知,对一切正整数,都有1+++…+≥21.已知函数f(x)=lnx﹣.(Ⅰ)若a>0,试判断f(x)在定义域内的单调性;(Ⅱ)若f(x)在[1,e]上的最小值为,求实数a的值;(Ⅲ)若f(x)<x2在(1,+∞)上恒成立,求实数a的取值范围.【考点】6B:利用导数研究函数的单调性;6E:利用导数求闭区间上函数的最值;6K:导数在最大值、最小值问题中的应用.【分析】(Ⅰ)先求出f(x)的定义域,再求出f′(x)=,从而得出函数的单调区间;(Ⅱ)分别讨论①若a≥﹣1,②若a≤﹣e,③若﹣e<a<﹣1的情况,结合函数的单调性,得出函数的单调区间,从而求出a的值;(Ⅲ)由题意得a>xlnx﹣x3,令g(x)=xlnx﹣x3,得到h(x)=g′(x)=1+lnx﹣3x2,h′(x)=,得出h(x)在(1,+∞)递减,从而g(x)在(1,+∞)递减,问题解决.【解答】解:(Ⅰ)由题意得f(x)的定义域是(0,+∞),且f′(x)=,∵a>0,∴f′(x)>0,故f(x)在(0,+∞)单调递增;(Ⅱ)由(Ⅰ)可得f′(x)=,①若a≥﹣1,则x+a≥0,即f′(x)≥0在[1,e]上恒成立,此时f(x)在[1,e]上递增,∴f(x)min=f(1)=﹣a=,∴a=﹣(舍),②若a≤﹣e,则x+a≤0,即f′(x)≤0在[1,e]上恒成立,此时f(x)在[1,e]上递减,∴f(x)min=f(e)=1﹣=,∴a=﹣(舍),③若﹣e<a<﹣1,令f′(x)=0,得x=﹣a,当1<x<﹣a时,f′(x)<0,∴f(x)在(1,﹣a)递减,当﹣a<x<e时,f′(x)>0,∴f(x)在(﹣a,e)递增,∴f(x)min=f(﹣a)=ln(﹣a)+1=,∴a=﹣,综上a=﹣;(Ⅲ)∵f(x)<x2,∴lnx﹣<x2,又x>0,∴a>xlnx﹣x3,令g(x)=xlnx﹣x3,h(x)=g′(x)=1+lnx﹣3x2,h′(x)=,∵x∈(1,+∞)时,h′(x)<0,∴h(x)在(1,+∞)递减,∴h(x)<h(1)=﹣2<0,即g′(x)<0,∴g(x)在(1,+∞)递减,∴g(x)<g(1)=﹣1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全生产责任制及岗位职责详细说明
- 高一英语(人教版)教学课件 必修二 UNIT 5 Section Ⅵ Writing
- 幼儿体育活动组织与安全管理细则
- 房地产开发投资可行性分析模板
- 广州版四年级英语单词默写及测试题
- 工厂设备维护保养制度范本
- 航运公司货物装载安全管理细则
- 石材地面施工安全风险及控制措施
- 医药代表销售技巧及客户维护方法
- 渗滤液基础知识培训课件
- 2025年互联网营销游戏化营销案例解析可行性研究报告
- DB31∕T 1048-2020“上海品牌”认证通 用要求
- 《交易心理分析》中文
- 病理性赌博的识别和干预
- 医院成本管控模式的创新与案例分析
- 2026届高三语文联考作文题目导写分析及范文:当语言与真实经验脱钩
- 2025医疗健康纸质行业市场深度记录系统与文件研究评估报告
- 政务大模型发展研究报告(2025年)
- 2025年国家开放大学《马克思主义基本原理》期末考试参考题库及答案解析
- 空管面试高分技巧
- 《听力考试室技术规范》
评论
0/150
提交评论