版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市昌平区2024届八年级数学第一学期期末预测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108° B.90° C.72° D.60°2.下列运算正确的是()A.2a2+a=3a3 B.(-a)3•a2=-a6 C.(-a)2÷a=a D.(2a2)3=6a63.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2019次运动后,动点P的坐标是()A.(2018,2) B.(2019,0)C.(2019,1) D.(2019,2)4.分式中的字母满足下列哪个条件时分式有意义()A. B. C. D.5.已知,则下列不等式成立的是()A. B. C. D.6.某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得-2分,不答的题得0分.已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则()A.x-y=20 B.x+y=20C.5x-2y=60 D.5x+2y=607.下列分式的变形正确的是()A. B.C. D.8.在实数0,﹣,π,|﹣3|中,最小的数是()A.0 B.﹣ C.π D.|﹣3|9.点A(3,3﹣π)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.如图,已知∠1=∠2,若用“SAS”证明△ACB≌△BDA,还需加上条件()A.AD=BC B.BD=AC C.∠D=∠C D.OA=OB二、填空题(每小题3分,共24分)11.计算:,则__________.12.若(x-2)(x+3)=x2+ax+b,则a+b13.已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是_________.14.计算:______________.15.如果点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为______.16.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设秒后两车间的距离为千米,关于的函数关系如图所示,则甲车的速度是______米/秒.17.等腰三角形的一个角是72º,则它的底角是______________________.18.如图,△ABC是等边三角形,D是BC延长线上一点,DE⊥AB于点E,EF⊥BC于点F.若CD=3AE,CF=6,则AC的长为_____.三、解答题(共66分)19.(10分)已知:如图OA平分∠BAC,∠1=∠1.求证:AO⊥BC.同学甲说:要作辅助线;同学乙说:要应用角平分线性质定理来解决:同学丙说:要应用等腰三角形“三线合一”的性质定理来解决.请你结合同学们的讨论写出证明过程.20.(6分)如图1,已知△ABC和△EFC都是等边三角形,且点E在线段AB上.(1)求证:BF∥AC;(2)过点E作EG∥BC交AC于点G,试判断△AEG的形状并说明理由;(3)如图2,若点D在射线CA上,且ED=EC,求证:AB=AD+BF.21.(6分)如图1,△ABC为等边三角形,点E、F分别在BC和AB上,且CE=BF,AE与CF相交于点H.(1)求证:△ACE≌△CBF;(2)求∠CHE的度数;(3)如图2,在图1上以AC为边长再作等边△ACD,将HE延长至G使得HG=CH,连接HD与CG,求证:HD=AH+CH22.(8分)某学校初二年级在元旦汇演中需要外出租用同一种服装若干件,已知在没有任何优惠的情况下,同时在甲服装店租用2件和乙服装店租用3件共需280元,在甲服装店租用4件和乙服装店租用一件共需260元.(1)求两个服装店提供的单价分别是多少?(2)若该种服装提前一周订货则甲乙两个租售店都可以给予优惠,具体办法如下:甲服装店按原价的八折进行优惠;在乙服装店如果租用5件以上,则超出5件的部分可按原价的六折进行优惠;设需要租用()件服装,选择甲店则需要元,选择乙店则需要元,请分别求出,关于的函数关系式;(3)若租用的服装在5件以上,请问租用多少件时甲乙两店的租金相同?23.(8分)请阅读下列材料,并完成相应的任务.任务:(1)利用上述方法推导立方和公式(从左往右推导);(2)已知,求的值.24.(8分)如图所示,数轴上表示的对应点分别为,点关于点的对称点为,设点所表示的数为.写出实数的值.求的值.25.(10分)先化简,再求值:,其中.26.(10分)先化简,再求值:,其中.
参考答案一、选择题(每小题3分,共30分)1、C【分析】首先设此多边形为n边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【题目详解】解:设此多边形为n边形,根据题意得:180(n-2)=540,解得:n=5,∴这个正多边形的每一个外角等于:=72°.故选C.【题目点拨】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.2、C【解题分析】试题分析:A、2a2与a不是同类项,不能合并,错误;B、(-a)3•a2=-a5,错误;C、(-a)2÷a=a,正确;D、(2a2)3=8a6,错误;故选C.考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.3、D【分析】分析点P的运动规律,找到循环次数即可.【题目详解】解:分析图象可以发现,点P的运动每4次纵坐标循环一次,横坐标等于运动的次数,∴2019=4×504+3,当第504循环结束时,点P位置在(2016,0),在此基础之上运动三次到(2019,2),故选:D.【题目点拨】本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环.4、B【分析】利用分式有意义的条件是分母不等于零,进而求出即可.【题目详解】x−1≠0时,分式有意义,即故选B.【题目点拨】此题主要考查了分式有意义的条件,利用分母不等于零求出是解题关键.5、C【分析】根据不等式的性质逐项分析.【题目详解】A在不等式的两边同时减去1,不等号的方向不变,故A错误;B在不等式的两边同时乘以3,不等号的方向不变,故B错误;C在不等式的两边同时乘以-1,不等号的方向改变,故C正确;D在不等式的两边同时乘以,不等号的方向不变,故D错误.【题目点拨】本题主要考查不等式的性质,(1)在不等式的两边同时加上或减去同一个数,不等号的方向不变;(2)在不等式的两边同时乘以或除以(不为零的数)同一个正数,不等号的方向不变;(3)在不等式的两边同时乘以或除以(不为零的数)同一个负数,不等号的方向改变.6、C【解题分析】设圆圆答对了x道题,答错了y道题,根据“每答对一道题得+5分,每答错一道题得-2分,不答的题得0分,已知圆圆这次竞赛得了1分”列出方程.【题目详解】设圆圆答对了x道题,答错了y道题,依题意得:5x-2y+(20-x-y)×0=1.故选C.【题目点拨】此题考查了由实际问题抽象出二元一次方程.关键是读懂题意,根据题目中的数量关系,列出方程.7、A【分析】根据分式的基本性质进行判断.【题目详解】A选项:,故正确;B选项:,故错误;C选项:,故错误;D选项:,故错误;故选:A.【题目点拨】考查了分式的基本性质,解题的关键是熟练运用分式的基本性质.8、B【分析】根据1大于一切负数;正数大于1解答即可.【题目详解】解:∵|﹣3|=3,∴实数1,﹣,π,|﹣3|按照从小到大排列是:﹣<1<|﹣3|<π,∴最小的数是﹣,故选:B.【题目点拨】本题考查实数的大小比较;解答时注意用1大于一切负数;正数大于1.9、D【解题分析】由点A中,,可得A点在第四象限【题目详解】解:∵3>0,3﹣π<0,∴点A(3,3﹣π)所在的象限是第四象限,【题目点拨】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).10、B【分析】根据SAS是指两边及夹角相等进行解答即可.【题目详解】解:已知∠1=∠2,AB=AB,根据SAS判定定理可知需添加BD=AC,故选B【题目点拨】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二、填空题(每小题3分,共24分)11、-1【分析】先根据二次根式与绝对值的非负性及非负数之和为零,得到各项均为零,再列出方程组求解即可.【题目详解】∵,,∴,∴解得:∴故答案为:-1.【题目点拨】本题主要考查了二次根式的非负性、绝对值的非负性及乘方运算,根据非负数之和为零得出各项均为零是解题关键.12、-5【解题分析】利用多项式乘以多项式的运算法则计算(x-2)(x+3),即可求得a、b的值,由此即可求得a+b的值.【题目详解】∵x-2x+3=x∴a=1,b=-6,∴a+b=1+(-6)=-5.故答案为:-5.【题目点拨】本题考查了多项式乘以多项式的运算法则,熟练运用多项式乘以多项式的运算法则计算出x-2x+3=13、a>b【题目详解】解:∵一次函数y=﹣2x+1中k=﹣2,∴该函数中y随着x的增大而减小,∵1<2,∴a>b.故答案为a>b.【题目点拨】本题考查一次函数图象上点的坐标特征.14、-1【解题分析】根据实数的性质即可化简求解.【题目详解】1-3=-1故答案为:-1.【题目点拨】此题主要考查实数的运算,解题的关键是熟知实数的性质.15、【解题分析】试题分析:由点P在第二象限内,可知横坐标为负,纵坐标为正,又因为点P到x轴的距离是4,到y轴的距离是3,可知横坐标为-3,纵坐标为4,所以点P的坐标为(-3,4).考点:象限内点的坐标特征.16、20【解题分析】试题分析:设甲车的速度是m米/秒,乙车的速度是n米/秒,根据题意及图形特征即可列方程组求解.设甲车的速度是m米/秒,乙车的速度是n米/秒,由题意得,解得则甲车的速度是20米/秒.考点:实际问题的函数图象,二元一次方程组的应用点评:此类问题是初中数学的重点,在中考中比较常见,一般难度不大,需熟练掌握.17、【分析】因为题中没有指明该角是顶角还是底角,则应该分两种情况进行分析.【题目详解】解:①当顶角是72°时,它的底角=(180°72°)=54°;
②底角是72°.
所以底角是72°或54°.
故答案为:72°或54°.【题目点拨】此题主要考查了学生的三角形的内角和定理及等腰三角形的性质的运用.18、1【分析】利用“一锐角为30°的直角三角形中,30°所对的直角边等于斜边的一半”,通过等量代换可得.【题目详解】解:AC与DE相交于G,如图,∵为等边三角形,∴AB=BC=AC,∠A=∠B=∠ACB=60°,∵DE⊥AE,∴∠AGE=30°,∴∠CGD=30°,∵∠ACB=∠CGD+∠D,∴∠D=30°,∴CG=CD,设AE=x,则CD=3x,CG=3x,在中,AG=2AE=2x,∴AB=BC=AC=5x,∴BE=4x,BF=5x﹣6,在中,BE=2BF,即4x=2(5x﹣6),解得x=2,∴AC=5x=1.故答案为1.【题目点拨】直角三角形的性质,30°所对的直角边等于斜边的一半为本题的关键.三、解答题(共66分)19、见解析【分析】作OD⊥AB,OE⊥AC,垂足分别为D、E,根据角平分线的性质可得OD=OE,然后根据等角对等边证出OB=OC,然后利用HL证出Rt△ODB≌Rt△OEC,可得∠ABO=∠ACO,再利用等角对等边证出AB=AC,最后根据三线合一即可证出结论.【题目详解】解:作OD⊥AB,OE⊥AC,垂足分别为D、E∵AO平分BAC,∴OD=OE∵∠1=∠1∴OB=OC在Rt△ODB和Rt△OEC中∴Rt△ODB≌Rt△OEC∴∠ABO=∠ACO又∵∠1=∠1∴∠ABC=∠ACB∴AB=AC∵AO平分∠BAC∴AO⊥BC【题目点拨】此题考查的是角平分线的性质、等腰三角形的性质和判定和全等三角形的判定及性质,掌握角平分线的性质、等腰三角形的性质和判定和全等三角形的判定及性质是解决此题的关键.20、(1)见解析;(2)△AEG是等边三角形;理由见解析;(3)见解析.【分析】(1)如图1,根据等边三角形的性质得到∠ACB=∠ECF=60°,AC=BC,CE=FC,推出△ACE≌△FCB,得到∠CBF=∠A=60°,于是得到∠CBF=∠ACB,根据平行线的判定定理即可得到AC∥BF;
(2)过E作EG∥BC交AC于G,根据等边三角形的判定定理可证明△AEG是等边三角形;(3)由(2)可知∠DAE=∠EGC=120°,可证明△ADE≌△GCE,进而得到AD=CG,再由(1)BF=AE=AG,于是可证得AB=BF+AD.【题目详解】解:(1)如图1,
∵△ABC和△EFC都是等边三角形,
∴∠ACB=∠ECF=∠A=60°,AC=BC,CE=FC,
∴∠1+∠3=∠2+∠3,
∴∠1=∠2,
在△ACE与△FCB中,,∴△ACE≌△FCB,
∴∠CBF=∠A=60°,
∴∠CBF=∠ACB,∴AC∥BF;
(2)△AEG是等边三角形,理由如下:如图,过E作EG∥BC交AC于G,∵∠ABC=∠ACB=60°,
∴∠AEG=∠AGE=60°,
∴△AEG是等边三角形.
(3)如图2,过E作EG∥BC交AC于G,由(2)可知△AEG是等边三角形,∴AE=EG=AG,∠GAE=∠AGC=60°,
∴∠DAE=∠EGC=120°,
∵DE=CE,∴∠D=∠1,
∴△ADE≌△GCE,
∴AD=CG,
∴AC=AG+CG=AG+AD,由(1)得△ACE≌△FCB,
∴BF=AE,
∴BF=AG,
∴AC=BF+AD,
∴AB=BF+AD.【题目点拨】本题考查了等边三角形的性质,全等三角形的判定和性质,正确的作出辅助线是解题的关键.21、(1)证明见解析;(2)60°;(3)证明见解析【分析】(1)根据等边三角形的性质可得:∠B=∠ACB=60°,BC=CA,然后利用“边角边”证明:△ACE和△CBF全等;
(2)根据全等三角形对应角相等可得:∠EAC=∠BCF,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式整理得到∠CHE=∠BAC;
(3)如图2,先说明△CHG是等边三角形,再证明△DCH≌△ACG,可得DH=AG=AH+HG=AH+CH.【题目详解】解:(1)证明:∵△ABC为等边三角形,
∴∠B=∠ACB=60°,BC=CA,
即∠B=∠ACE=60°,
在△ACE和△CBF中,
∴△ACE≌△CBF(SAS);(2)解:由(1)知:△ACE≌△CBF,
∴∠EAC=∠BCF,
∴∠CHE=∠EAC+∠ACF=∠BCF+∠ACF=∠ACB=60°;
(3)如图2,由(2)知:∠CHE=60°,
∵HG=CH,
∴△CHG是等边三角形,
∴CG=CH=HG,∠G=60°,
∵△ACD是等边三角形,
∴AC=CD,∠ACD=60°,
∵△ACE≌△CBF,
∴∠AEC=∠BFC,
∵∠BFC=∠BAC+∠ACF=60°+∠ACF,
∠AEC=∠G+∠BCG=60°+∠BCG,
∴∠ACF=∠BCG,
∴∠ACF+∠ACD=∠BCG+∠ACB,
即∠DCH=∠ACG,
∴△DCH≌△ACG,
∴DH=AG=AH+HG=AH+CH.【题目点拨】本题考查了全等三角形的判定与性质,等边三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记等边三角形的性质,并以此创造三角形全等的条件是解题的关键.22、(1)甲店每件租金50元,乙店每件租金60元;(2),;(3)租用30件时,甲乙两店的租金相同【分析】(1)设甲店每件租金x元,乙店每件租金y元,根据“在甲服装店租用2件和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 乡镇公路档案管理制度
- 离婚协议书1观看
- 讲解档案管理制度
- 2026年供应链管理部经理面试题集含答案
- 2026年plc考试试题及答案
- 2026年从实习到专业保育员工作面试题库
- 2026年外语教师面试题及语言教学方法案例含答案
- 2026年金融投资经理面试题库及答案
- 2026年焊接工程师理论考试题集含答案
- 2026年面试题集数据策略经理岗位面试问题及答案
- 盘州市教育局机关所属事业单位2025年公开考调工作人员备考题库完整答案详解
- 辽宁省鞍山市2025-2026学年八年级上学期1月期末语文试卷
- 2025湖南常德芙蓉烟叶复烤有限责任公司招聘拟录用人员笔试历年参考题库附带答案详解
- 中央空调多联机节能施工方案
- 2026年失智症患者照护协议
- 骨科护理标准操作流程手册
- 产品推广专员培训
- 《两次鸦片战争》同步练习
- 生态保护红线内人类活动生态环境影响评价技术指南
- GB/T 228.3-2019金属材料拉伸试验第3部分:低温试验方法
- GB/T 10612-2003工业用筛板板厚
评论
0/150
提交评论