版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届四川省成都市育才学校数学八上期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图所示的标志中,是轴对称图形的有()A.1个 B.2个 C.3个 D.4个2.等腰三角形一个角的度数为50°,则顶角的度数为()A.50° B.80° C.65° D.50°或80°3.如图,在△ABC中,AB=AC,依据尺规作图的痕迹,判断下列结论错误的是()A.AD⊥BC B.BD=CD C.DE∥AB D.DE=BD4.给出下列长度的四组线段:①1,,;②3,4,5;③6,7,8;④a2-1,a2+1,2a(a为大于1的正整数).其中能组成直角三角形的有()A.①②③ B.①②④ C.①② D.②③④5.把分式中的a和b都变为原来的2倍,那么该分式的值()A.变为原来的2倍 B.变为原来的4倍 C.不变 D.变为原来的8倍6.下列各组线段,能构成三角形的是()A. B.C. D.7.下列各点位于平面直角坐标系内第二象限的是()A. B. C. D.8.若(x+a)(x+b)的积中不含x的一次项,那么a与b一定是()A.互为相反数 B.互为倒数 C.相等 D.a比b大9.如图,以正方形ABCD的中心为原点建立平面直角坐标系,点A的坐标为(2,2),则点C的坐标为()A.(2,2) B.(﹣2,2) C.(﹣2,﹣2) D.(2,﹣2)10.估计的值在()A.和之间 B.和之间 C.和之间 D.和之间11.甲、乙两名同学的5次射击训练成绩(单位:环)如下表:甲78988乙610978比较甲、乙这5次射击成绩的方差,结果为:甲的方差()乙的方差.A.大于 B.小于 C.等于 D.无法确定12.某射击队进行1000射击比赛,每人射击10次,经过统计,甲、乙两名队员成绩如下:平均成绩都是96.2环,甲的方差是0.25,乙的方差是0.21,下列说法正确的是()A.甲的成绩比乙稳定 B.乙的成绩比甲稳定C.甲乙成绩稳定性相同 D.无法确定谁稳定二、填空题(每题4分,共24分)13.在锐角中,有一点它到、两点的距离相等,并且点到、的距离也相等.,,则______°.14.如图所示,△ABC中,∠C=90°,AD平分∠BAC,AB=6,CD=2,则△ABD的面积是_______.15.如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形是_____边形.16.如图,长方体的长为15厘米,宽为10厘米,高为20厘米,点B到点C的距离是5厘米.一只小虫在长方体表面从A爬到B的最短路程是__________17.点,是直线上的两点,则_______0(填“>”或“<”).18.如图所示,在中,,,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则的度数为(________)三、解答题(共78分)19.(8分)如图,平面直角坐标系中,直线AB:y=﹣x+b交y轴于点A(0,4),交x轴于点B.(1)求直线AB的表达式和点B的坐标;(2)直线l垂直平分OB交AB于点D,交x轴于点E,点P是直线l上一动点,且在点D的上方,设点P的纵坐标为n.①用含n的代数式表示△ABP的面积;②当S△ABP=8时,求点P的坐标;③在②的条件下,以PB为斜边在第一象限作等腰直角△PBC,求点C的坐标.20.(8分)是等边三角形,作直线,点关于直线的对称点为,连接,直线交直线于点,连接.(1)如图①,求证:;(提示:在BE上截取,连接.)(2)如图②、图③,请直接写出线段,,之间的数量关系,不需要证明;(3)在(1)、(2)的条件下,若,则__________.21.(8分)计算.(1).(2).22.(10分)如图,,,垂足分别为E、D,CE,BD相交于.(1)若,求证:;(2)若,求证:.23.(10分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,连接AP,交CD于点M,若∠ACD=110°,求∠CMA的度数______.24.(10分)问题背景若两个等腰三角形有公共底边,则称这两个等腰三角形的顶角的顶点关于这条底边互为顶针点;若再满足两个顶角的和是180°,则称这两个顶点关于这条底边互为勾股顶针点.如图1,四边形中,是一条对角线,,,则点与点关于互为顶针点;若再满足,则点与点关于互为勾股顶针点.初步思考(1)如图2,在中,,,、为外两点,,,为等边三角形.①点与点______关于互为顶针点;②点与点______关于互为勾股顶针点,并说明理由.实践操作(2)在长方形中,,.①如图3,点在边上,点在边上,请用圆规和无刻度的直尺作出点、,使得点与点关于互为勾股顶针点.(不写作法,保留作图痕迹)思维探究②如图4,点是直线上的动点,点是平面内一点,点与点关于互为勾股顶针点,直线与直线交于点.在点运动过程中,线段与线段的长度是否会相等?若相等,请直接写出的长;若不相等,请说明理由.25.(12分)已知:如图,点B、E、C、F在同一条直线上,AB⊥BF于点B,DE⊥BF于点E,BE=CF,AC=DF.求证:(1)AB=DE;(2)AC∥DF.26.如图1,在△ABC中,AB=AC,∠BAC=90°,D为AC边上一动点,且不与点A点C重合,连接BD并延长,在BD延长线上取一点E,使AE=AB,连接CE.(1)若∠AED=10°,则∠DEC=度;(1)若∠AED=a,试探索∠AED与∠AEC有怎样的数量关系?并证明你的猜想;(3)如图1,过点A作AF⊥BE于点F,AF的延长线与EC的延长线交于点H,求证:EH1+CH1=1AE1.
参考答案一、选择题(每题4分,共48分)1、C【解题分析】根据轴对称的定义逐一判断即可.【题目详解】是轴对称图形,故符合题意;是轴对称图形,故符合题意;是轴对称图形,故符合题意;不是轴对称图形,故不符合题意,共有3个轴对称图形故选C.【题目点拨】此题考查的是轴对称图形的识别,掌握轴对称图形的定义是解决此题的关键.2、D【分析】等腰三角形一内角为50°,没说明是顶角还是底角,所以分两种情况,①50°为顶角;②50°为底角来讨论.【题目详解】(1)当50°角为顶角,顶角度数为50°;(2)当50°为底角时,顶角=180°-2×50°=80°,所以D选项是正确的,故本题选D.【题目点拨】本题考查了等腰三角形的性质及三角形内角和定理,若没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是解答问题的关键.3、D【分析】由尺规作图痕迹可知AD是∠BAC平分线,另一条为AC的垂直平分线,由此即可求解.【题目详解】解:如下图所示,由尺规作图痕迹可知AD是∠BAC平分线,EF是AC的垂直平分线,
又已知AB=AC,∴由等腰三角形的“三线合一”性质可知,AD是底边BC上的高,AD是△ABC的中线,∴AD⊥BC,BD=CD,故选项A和选项B正确,又EF是AC的垂直平分线,∴E是AC的中点,由直角三角形斜边上的中线等于斜边的一半可知,EA=ED,∴∠EAD=∠EDA,又∠EAD=∠BAD,∴∠EDA=∠BAD,∴DEAB,∴选项C正确,选项D缺少已知条件,推导不出来,故选:D.【题目点拨】本题考查了尺规作图角平分线和垂直平分线的作法、等腰三角形的性质等,熟练掌握其作图方法及其性质是解决本题的关键.4、B【分析】根据勾股定理的逆定理逐一判断即可.【题目详解】解:①因为12+2=2,所以长度为1,,的线段能组成直角三角形,故①符合题意;②因为32+42=52,所以长度为3,4,5的线段能组成直角三角形,故②符合题意;③因为62+72≠82,所以长度为6,7,8的线段不能组成直角三角形,故③不符合题意;④因为(a2-1)2+(2a)2=a4-2a2+1+4a2=a4+2a2+1=(a2+1)2,所以长度为a2-1,a2+1,2a(a为大于1的正整数)的线段能组成直角三角形,故④符合题意.综上:符合题意的有①②④故选B.【题目点拨】此题考查的是直角三角形的判定,掌握利用勾股定理的逆定理判定直角三角形是解决此题的关键.5、C【分析】根据分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.即可判断.【题目详解】解:分式中的a和b都变为原来的2倍可得,则该分式的值不变.
故选:C.【题目点拨】本题考查的知识点是分式的基本性质,解题的关键是熟练的掌握分式的基本性质.6、C【分析】判断三条线段能否构成三角形,只需让两个较短的线段长度相加,其和若大于最长线段长度,则可以构成三角形,否则不能构成三角形.逐一判断即可.【题目详解】A选项,1+3<5,不能构成三角形;B选项,2+4=6,不能构成三角形;C选项,1+4>4,可以构成三角形;D选项,8+8<20,不能构成三角形,故选C.【题目点拨】本题考查了构成三角形的条件,掌握构成三角形的判断方法是解题的关键.7、A【分析】根据所给点的横纵坐标的符号可得所在象限.第二象限点特点(-,+)【题目详解】解:、,在第二象限,故此选项正确;、,在轴上,故此选项错误;、,在第四象限,故此选项错误;、,在轴上,故此选项错误;故选.【题目点拨】本题主要考查象限内点的符号特点,掌握每个象限点特点是解决此题的关键.8、A【分析】先用多项式乘以多项式的运算法则展开求它们的积,并且把看作常数合并关于的同类项,的一次项系数为0,得出的关系.【题目详解】∵又∵的积中不含的一次项∴∴与一定是互为相反数故选:A.【题目点拨】本题考查了多项式乘多项式法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.9、C【解题分析】A,C点关于原点对称,所以,C点坐标是(-2,-2)选C.10、D【分析】利用算术平方根进行估算求解.【题目详解】解:∵∴故选:D.【题目点拨】本题考查无理数的估算,掌握算术平方根的概念正确进行计算从而进行估算是本题的解题关键.11、B【分析】先利用表中的数据分别计算出甲、乙的方差,再进行比较即可.【题目详解】故选:B.【题目点拨】本题主要考查平均数和方差,掌握平均数和方差的求法是解题的关键.12、B【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各组数据偏离平均数越小,即波动越小,数据越稳定.据此求解即可.【题目详解】解:∵甲的方差是0.25,乙的方差是0.21,∴乙的方差<甲的方差,∴乙的成绩比甲稳定.故选:B.【题目点拨】本题考查了根据方差的意义在实际问题中的简单应用,明确方差的意义是解题的关键.二、填空题(每题4分,共24分)13、110【分析】根据已知可得∠PBC=∠PCB,点在的角平分线上,从而得出∠PBC=∠PCB=∠ABP,再根据三角形的内角和定理可得出答案【题目详解】解:根据题意画出图形∵点它到、两点的距离相等,∴PB=PC,∴∠PBC=∠PCB,
∵点到、的距离也相等∴BP是∠ABC的角平分线,
∴∠PBC=∠ABP,
∴∠PBC=∠PCB=∠ABP,∵∠A=50°,
∴∠ABP+∠PBC+∠PCB+∠ACP=130°,
∵∠ACP=25°,
∴∠PBC=∠PCB=35°.∴∠BPC=180°-35°-35°=110°故答案为:110【题目点拨】此题主要考查了角平分线的判定、三角形的内角和定理、等腰三角形的性质,,正确得出∠PBC=∠PCB=∠ABP是解题关键.14、1【分析】由角平分线上的点到角的两边距离相等性质解题.【题目详解】平分点到AB的距离等于CD长度2,所以故答案为:1.【题目点拨】本题考查角平分线的性质、三角形的面积公式等知识,是常见基础考点,掌握相关知识是解题关键.15、六【分析】n边形的内角和可以表示成(n﹣2)•180°,外角和为360°,根据题意列方程求解.【题目详解】设多边形的边数为n,依题意,得:(n﹣2)•180°=2×360°,解得n=6,故答案为:六.【题目点拨】本题考查了多边形的内角和计算公式,多边形的外角和.关键是根据题意利用多边形的外角和及内角和之间的关系列出方程求边数.16、25【解题分析】分析:求长方体中两点之间的最短路径,最直接的作法,就是将长方体侧面展开,然后利用两点之间线段最短解答.详解:只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如图1:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5,∴BD=CD+BC=10+5=15cm,AD=20cm,在直角三角形ABD中,根据勾股定理得:∴AB==25cm;只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图2:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5,∴BD=CD+BC=20+5=25cm,AD=10cm,在直角三角形ABD中,根据勾股定理得:∴AB=cm;只要把长方体的右侧表面剪开与后面这个侧面所在的平面形成一个长方形,如图3:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5cm,∴AC=CD+AD=20+10=30cm,在直角三角形ABC中,根据勾股定理得:∴AB=cm;∵25<5<5,∴自A至B在长方体表面的连线距离最短是25cm.故答案为25厘米【点评】此题主要考查平面展开图的最短距离,注意长方体展开图的不同情况,正确利用勾股定理解决问题.17、>.【分析】根据k<0,一次函数的函数值y随x的增大而减小解答.【题目详解】解:∵直线的k<0,∴函数值y随x的增大而减小.∵点,是直线上的两点,-1<3,∴y1>y2,即故答案为:>.【题目点拨】本题考查一次函数图象上点的坐标特征。利用数形结合思想解题是关键.18、30【分析】利用等腰三角形的性质可得出ABC的度数,再根据垂直平分线定理得出AD=BD,,继而可得出答案.【题目详解】解:DE垂直平分AB故答案为:30.【题目点拨】本题考查的知识点是等腰三角形的性质以及垂直平分线的性质,掌握以上知识点是解此题的关键.三、解答题(共78分)19、(1)y=﹣x+1,点B的坐标为(1,0);(2)①2n﹣1;②(2,3);③3,1).【分析】(1)把点A的坐标代入直线解析式可求得b=1,则直线的解析式为y=﹣x+1,令y=0可求得x=1,故此可求得点B的坐标;(2)①由题l垂直平分OB可知OE=BE=2,将x=2代入直线AB的解析式可求得点D的坐标,设点P的坐标为(2,n),然后依据S△APB=S△APD+S△BPD可得到△APB的面积与n的函数关系式为S△APB=2n﹣1;②由S△ABP=8得到关于n的方程可求得n的值,从而得到点P的坐标;③如图1所示,过点C作CM⊥l,垂足为M,再过点B作BN⊥CM于点N.设点C的坐标为(p,q),先证明△PCM≌△CBN,得到CM=BN,PM=CN,然后由CM=BN,PM=CN列出关于p、q的方程组可求得p、q的值;如图2所示,同理可求得点C的坐标.【题目详解】(1)∵把A(0,1)代入y=﹣x+b得b=1∴直线AB的函数表达式为:y=﹣x+1.令y=0得:﹣x+1=0,解得:x=1∴点B的坐标为(1,0).(2)①∵l垂直平分OB,∴OE=BE=2.∵将x=2代入y=﹣x+1得:y=﹣2+1=2.∴点D的坐标为(2,2).∵点P的坐标为(2,n),∴PD=n﹣2.∵S△APB=S△APD+S△BPD,∴S△ABP=PD•OE+PD•BE=(n﹣2)×2+(n﹣2)×2=2n﹣1.②∵S△ABP=8,∴2n﹣1=8,解得:n=3.∴点P的坐标为(2,3).③如图1所示:过点C作CM⊥l,垂足为M,再过点B作BN⊥CM于点N.设点C(p,q).∵△PBC为等腰直角三角形,PB为斜边,∴PC=CB,∠PCM+∠MCB=90°.∵CM⊥l,BN⊥CM,∴∠PMC=∠BNC=90°,∠MPC+∠PCM=90°.∴∠MPC=∠NCB.在△PCM和△CBN中,,∴△PCM≌△CBN.∴CM=BN,PM=CN.∴,解得.∴点C的坐标为(3,1).如图2所示:过点C作CM⊥l,垂足为M,再过点B作BN⊥CM于点N.设点C(p,q).∵△PBC为等腰直角三角形,PB为斜边,∴PC=CB,∠PCM+∠MCB=90°.∵CM⊥l,BN⊥CM,∴∠PMC=∠BNC=90°,∠MPC+∠PCM=90°.∴∠MPC=∠NCB.在△PCM和△CBN中,,∴△PCM≌△CBN.∴CM=BN,PM=CN.∴,解得.∴点C的坐标为(0,2)舍去.综上所述点C的坐标为(3,1).【题目点拨】本题考查了一次函数的几何问题,掌握解一次函数的方法以及全等三角形的性质以及判定定理是解题的关键.20、(1)见解析;(2)图②中,CE+BE=AE,图③中,AE+BE=CE;(3)1.1或4.1【分析】(1)在BE上截取,连接,只要证明△AED≌△AFB,进而证出△AFE为等边三角形,得出CE+AE=BF+FE,即可解决问题;(2)图②中,CE+BE=AE,延长EB到F,使BF=CE,连接,只要证明△ACE≌△AFB,进而证出△AFE为等边三角形,得出CE+BE=BF+BE,即可解决问题;图③中,AE+BE=CE,在EC上截取CF=BE,连接,只要证明△AEB≌△AFC,进而证出△AFE为等边三角形,得出AE+BE=CF+EF,即可解决问题;(3)根据线段,,,BD之间的数量关系分别列式计算即可解决问题.【题目详解】(1)证明:在BE上截取,连接,
在等边△ABC中,
AC=AB,∠BAC=60°
由对称可知:AP是CD的垂直平分线,AC=AD,∠EAC=∠EAD,
设∠EAC=∠DAE=x.
∵AD=AC=AB,
∴∠D=∠ABD=(180°-∠BAC-2x)=60°-x,
∴∠AEB=60-x+x=60°.
∵AC=AB,AC=AD,∴AB=AD,∴∠ABF=∠ADE,∵,∴△ABF≌△ADE,∴AF=AE,BF=DE,∴△AFE为等边三角形,∴EF=AE,∵AP是CD的垂直平分线,∴CE=DE,∴CE=DE=BF,
∴CE+AE=BF+FE=BE;(2)图②中,CE+BE=AE,延长EB到F,使BF=CE,连接在等边△ABC中,
AC=AB,∠BAC=60°
由对称可知:AP是CD的垂直平分线,AC=AD,∠EAC=∠EAD,
∴AB=AD,CE=DE,∵AE=AE∴△ACE≌△ADE,∴∠ACE=∠ADE∵AB=AD,∴∠ABD=∠ADB∴∠ABF=∠ADE=∠ACE∵AB=AC,BF=CE,∴△ACE≌△ABF,∴AE=AF,∠BAF=∠CAE∵∠BAC=∠BAE+∠CAE=60°∴∠EAF=∠BAE+∠BAF=60°∴△AFE为等边三角形,∴EF=AE,∴AE=BE+BF=BE+CE,即CE+BE=AE;图③中,AE+BE=CE,在EC上截取CF=BE,连接,在等边△ABC中,
AC=AB,∠BAC=60°
由对称可知:AP是CD的垂直平分线,AC=AD,∠EAC=∠EAD,
∴AB=AD,CE=DE,∵AE=AE∴△ACE≌△ADE,∴∠ACE=∠ADE∵AB=AD,∴∠ABD=∠ADB∴∠ABD=∠ADE=∠ACE∵AB=AC,BE=CF,∴△ACF≌△ABE,∴AE=AF,∠BAE=∠CAF∵∠BAC=∠BAF+∠CAF=60°∴∠EAF=∠BAF+∠BAE=60°∴△AFE为等边三角形,∴EF=AE,∴CE=EF+CF=AE+BE,即AE+BE=CE;(3)在(1)的条件下,若,则AE=3,∵CE+AE=BE,∴BE-CE=3,∵BD=BE+ED=BE+CE=6,∴CE=1.1;在(2)的条件下,若,则AE=3,因为图②中,CE+BE=AE,而BD=BE-DE=BE-CE,所以BD不可能等于2AE;图③中,若,则AE=3,∵AE+BE=CE,∴CE-BE=3,∵BD=BE+ED=BE+CE=6,∴CE=4.1.即CE=1.1或4.1.【题目点拨】本题考查几何变换,等边三角形的性质,线段垂直平分线的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.21、(1);(2).【分析】(1)先运用乘法分配律,二次根式分母有理化计算,再化为最简二次根式即可;(2)将二次根式分母有理化,再化为最简二次根式,负数的立方根是负数,任何非零数的0次幂为1,负指数幂即先求其倒数,据此解题.【题目详解】(1).(2).【题目点拨】本题考查二次根式的混合运算、负指数幂、零指数幂的运算等知识,是重要考点,难度较易,掌握相关知识是解题关键.22、(1)证明见解析;(1)证明见解析.【分析】(1)根据已知条件,∠BEC=∠CDB=90°,∠EOB=∠DOC,所以∠B=∠C,则△ABO△ACO(AAS),即OB=OC.(1)根据(1)可得△BOE△COD(AAS),即OE=OD,再由CE⊥AB,BD⊥AC可得AO是∠BAC的角平分线,故∠1=∠1.【题目详解】(1)∵CE⊥AB,BD⊥AC,∴∠BEC=∠CDB=90°,又∵∠EOB=∠DOC,∴∠B=∠C,∴在△ABO与△ACO中,,∴△ABO△ACO(AAS),∴OB=OC.(1)由(1)知,∠BEO=∠CDO,∴在△BOE与△COD中,,∴△BOE△COD(AAS),∴OE=OD.又∵CE⊥AB,BD⊥AC,∴AO是∠BAC的角平分线,∴∠1=∠1.【题目点拨】本题考查全等三角形的性质,解题关键是根据已知条件证明得出△ABO△ACO(AAS).23、∠CMA=35°.【解题分析】根据两直线平行,同旁内角互补得出,再根据是的平分线,即可得出的度数,再由两直线平行,内错角相等即可得出结论.【题目详解】∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=110°,∴∠CAB=70°,由作法知,是的平分线,∴.又∵AB∥CD,∴∠CMA=∠BAM=35°.【题目点拨】本题考查了角平分线的作法和意义,平行线的性质等知识解决问题.解题时注意:两直线平行,内错角相等.24、(1)①、,②,理由见解析;(2)①作图见解析;②与可能相等,的长度分别为,,2或1.【分析】(1)根据互为顶点,互为勾股顶针点的定义即可判断.
(2)①以C为圆心,CB为半径画弧交AD于F,连接CF,作∠BCF的角平分线交AB于E,点E,点F即为所求.
②分四种情形:如图①中,当时;如图②中,当时;如图③中,当时,此时点F与D重合;如图④中,当时,点F与点D重合,分别求解即可解决问题.【题目详解】解:(1)根据互为顶点,互为勾股顶针点的定义可知:
①点A与点D和E关于BC互为顶针点;
②点D与点A关于BC互为勾股顶针点,理由:如图2中,∵△BDC是等边三角形,
∴∠D=60°,
∵AB=AC,∠ABC=30°,
∴∠ABC=∠ACB=30°,
∴∠BAC=120°,
∴∠A+∠D=10°,
∴点D与点A关于BC互为勾股顶针点,
故答案为:D和E,A.(2)①如图,点、即为所求(本质就是点关于的对称点为,相当于折叠).②与可能相等,情况如下:情况一:如图①,由上一问易知,,当时,设,连接,∵,∴,∴,在中,,,∴,解得,即;情况二:如图②当时,设,同法可得,则,,则,,在中,则有,解得:;情况三:如图③,当时,此时点与重合,可得;情况四:如图④,当时,此时点与重合,可得.综上所述,与可能相等,的长度分别为,,2或1.【题目点拨】本题属于四边形综合题,考查了矩形的性质,等边三角形的性质,勾股定理,全等三角形的判定和性质等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.25、(1)证明见解析;(2)证明见解析【分析】(1)根据已知条件,通过推导Rt△ABC≌Rt△DEF,完成AB=DE的证明;(2)通过Rt△ABC≌Rt△DEF,可得∠ACB=∠DFB,从而完成AC∥DF的证
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 内卷介绍教学课件
- 内儿科培训内容课件
- 内个人介绍教学课件
- 汉服活动团建策划方案(3篇)
- 游戏广场活动策划方案(3篇)
- 维保部奖惩管理制度(3篇)
- 超市联营户进货管理制度(3篇)
- 银行餐厅食材管理制度(3篇)
- 高校资产日常管理制度建设(3篇)
- 《GAT 1386-2017刑事案件侦查关联关系数据项》专题研究报告
- 中医护理压疮防治实施方案
- 武汉大学人民医院心理援助热线岗位招聘3人考试参考题库附答案解析
- 消除艾梅乙培训课件
- 2025职业暴露处理流程及应急预案
- 知道智慧树商业伦理与企业社会责任(山东财经大学)满分测试答案
- 六年级语文上册《1-8单元》课本重点句子附仿写示范
- 2025中国铁路济南局集团有限公司招聘普通高校本科及以上学历毕业笔试参考题库附带答案详解(10套)
- 外场工地施工管理办法
- GM-1927-01SGM-Project-Plan项目计划表格
- 肥胖患者全麻苏醒期护理
- 职中开设计算机专业可行性论证报告
评论
0/150
提交评论