2024届吉林省松原市宁江区八上数学期末学业水平测试试题含解析_第1页
2024届吉林省松原市宁江区八上数学期末学业水平测试试题含解析_第2页
2024届吉林省松原市宁江区八上数学期末学业水平测试试题含解析_第3页
2024届吉林省松原市宁江区八上数学期末学业水平测试试题含解析_第4页
2024届吉林省松原市宁江区八上数学期末学业水平测试试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届吉林省松原市宁江区八上数学期末学业水平测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,在平面直角坐标系中,已知正比例函数与一次函数的图象交于点,设轴上有一点,过点作轴的垂线(垂线位于点的右侧)分别交和的图象与点、,连接,若,则的面积为()A. B. C. D.2.在根式①

④中最简二次根式是()A.①② B.③④ C.①③ D.①④3.如图,,,下列结论错误的是()A. B.C. D.4.已知分式的值为0,那么x的值是()A.﹣1 B.﹣2 C.1 D.1或﹣25.如果x2+2ax+b是一个完全平方公式,那么a与b满足的关系是()A.b=a B.a=2b C.b=2a D.b=a26.如图,阴影部分是一个正方形,此正方形的面积是()A.16 B.8 C.4 D.27.如图,在RtΔABC中,∠A=90°,∠ABC的平分线交AC于点D,AD=3,BC=10,则ΔBDC的面积是()

A.15 B.12 C.30 D.108.点M(1,2)关于x轴对称的点的坐标为()A.(1,-2) B.(-1,2) C.(-1,-2) D.(2,-1)9.到三角形的三个顶点距离相等的点是()A.三条角平分线的交点 B.三条边的垂直平分线的交点C.三条高的交点 D.三条中线的交点10.满足下列条件的△ABC不是直角三角形的是()A.AC=1,BC=,AB=2 B.AC:BC:AB=3:4:5C.∠A:∠B:∠C=1:2:3 D.∠A:∠B:∠C=3:4:5二、填空题(每小题3分,共24分)11.在坐标系中,已知点关于轴,轴的对称点分别为,,若坐标轴上的点恰使,均为等腰三角形,则满足条件的点有______个.12.若等腰三角形的一个内角比另一个内角大,则等腰三角形的顶角的度数为________.13.计算:=________.14.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB=____.15.甲、乙二人同时从A地出发,骑车20千米到B地,已知甲比乙每小时多行3千米,结果甲比乙提前20分钟到达B地,求甲、乙二人的速度。若设甲用了x小时到达B地,则可列方程为_____________________16.点与点关于_________对称.(填“轴”或“轴”)17.如图,是的平分线,点在上,,垂足为,若,则点到的距离是__________________.18.若分式的值为0,则的值为____________.三、解答题(共66分)19.(10分)如图,在中,的平分线与的外角平分线相交于点,分别交直线、于点、.(1)如图1,当点在边上时,求证:;(2)如图2,当点在延长线上时,直接写出、、之间的等量关系.(不必证明)20.(6分)已知:如图,四边形ABCD中,AD∥BC,∠B=90°,AD=AB=4,BC=7,点E在BC上,将△CDE沿DE折叠,点C恰好落在AB边上的点F处.(1)求线段DC的长度;(2)求△FED的面积.21.(6分)(1)化简:(2)先化简,再取一个适当的数代入求值.22.(8分)已知:如图,在中,点D在边AC上,BC与DE交于点P,AB=DB,(1)求证:(2)若AD=2,DE=5,BE=4,求的周长之和.23.(8分)某单位举行“健康人生”徒步走活动,某人从起点体育村沿建设路到市生态园,再沿原路返回,设此人离开起点的路程s(千米)与徒步时间t(小时)之间的函数关系如图所示,其中从起点到市生态园的平均速度是4千米/小时,用2小时,根据图象提供信息,解答下列问题.(1)求图中的a值.(2)若在距离起点5千米处有一个地点C,此人从第一次经过点C到第二次经过点C,所用时间为1.75小时.①求AB所在直线的函数解析式;②请你直接回答,此人走完全程所用的时间.24.(8分)如图,在中,,点为直线上一动点,连接,以为直角边作等腰直角三角形.(1)如图1,若当点在线段上时(不与点重合),证明:;(2)如图2,当点在线段的延长线上时,试猜想与的数量关系和位置关系,并说明理由.25.(10分)如图,△ABC和△ADE都是等腰直角三角形,CE与BD相交于点M,BD交AC于点N.(1)证明:BD=CE;(2)证明:BD⊥CE.26.(10分)如图,在平面直角坐标系中,,,且,满足,直线经过点和.(1)点的坐标为(,),点的坐标为(,);(2)如图1,已知直线经过点和轴上一点,,点在直线AB上且位于轴右侧图象上一点,连接,且.①求点坐标;②将沿直线AM平移得到,平移后的点与点重合,为上的一动点,当的值最小时,请求出最小值及此时N点的坐标;(3)如图2,将点向左平移2个单位到点,直线经过点和,点是点关于轴的对称点,直线经过点和点,动点从原点出发沿着轴正方向运动,连接,过点作直线的垂线交轴于点,在直线上是否存在点,使得是等腰直角三角形?若存在,求出点坐标.

参考答案一、选择题(每小题3分,共30分)1、A【解题分析】联立两一次函数的解析式求出x、y的值即可得出A点坐标,过点A作x轴的垂线,垂足为D,在Rt△OAD中根据勾股定理求出OA的长,故可得出BC的长,根据P(n,0)可用n表示出B、C的坐标,故可得出n的值,由三角形的面积公式即可得出结论.【题目详解】由题意得,,解得,∴A(4,3)过点A作x轴的垂线,垂足为D,在Rt△OAD中,由勾股定理得,OA==1.∴=2.∵P(n,0),∴B(n,),C(n,),∴BC=-()=,∴=2,解得n=8,∴OP=8∴S△OBC=BC•OP=×2×8=44故选A.【题目点拨】本题考查的是两条直线相交或平行问题,根据题意作出辅助线.构造出直角三角形是解答此题的关键.2、C【分析】根据最简二次根式的定义逐个判断即可.【题目详解】①是最简二次根式;②,被开方数含分母,不是最简二次根式;③是最简二次根式;④,被开方数含能开得尽方的因数,不是最简二次根式;故选:C.【题目点拨】本题考查了最简二次根式,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.3、D【分析】根据全等三角形的判定及性质逐一判断即可.【题目详解】解:在△ABE和△ACD中∴△ABE≌△ACD,故A选项正确;∴∠B=∠C,故C选项正确;∵,∴AB-AD=AC-AE∴,故B选项正确;无法证明,故D选项错误.故选D.【题目点拨】此题考查的是全等三角形的判定及性质,掌握全等三角形的判定定理和性质定理是解决此题的关键.4、B【解题分析】试题解析:分析已知和所求,根据分式值为0的条件为:分子为0而分母不为0,不难得到(x-1)(x+2)=0且-1≠0;根据ab=0,a=0或b=0,即可解出x的值,再根据-1≠0,即可得到x的取值范围,由此即得答案.本题解析:∵的值为0∴(x-1)(x+2)=0且-1≠0.解得:x=-2.故选B.5、D【分析】利用完全平方公式的结构特征判断即可.【题目详解】解:∵x1+1ax+b是一个完全平方公式,∴b=a1.故选D.【题目点拨】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.6、B【分析】先证明图中的三角形为等腰直角三角形,再利用勾股定理求出正方形边长的平方即可得出结果.【题目详解】解:如图,

∵阴影部分是正方形,所以∠ABC=90°,∴∠C=∠BAC=45°,∴AB=BC,又AC=4,∴AB2+BC2=AC2=16

∴AB2=AC2=1,

∴正方形的面积=AB2=1.

故选:B.【题目点拨】本题考查勾股定理,等腰三角形的判定,正方形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7、A【分析】作垂直辅助线构造新三角形,继而利用AAS定理求证△ABD与△EBD全等,最后结合全等性质以及三角形面积公式求解本题.【题目详解】作DE⊥BC,如下图所示:

∵BD是∠ABC的角平分线,∴∠ABD=∠EBD.又∵∠A=∠DEB=90°,BD=BD,∴,∴DE=DA=1.在△BDC中,.故选:A.【题目点拨】本题考查全等三角形的判定和性质,该题辅助线的做法较为容易,有角度相等以及公共边的提示,图形构造完成后思路便会清晰,后续只需保证计算准确即可.8、A【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P(x,y)关于x轴的对称点P′的坐标是(x,-y),进而求出即可.【题目详解】点M(1,2)关于x轴对称的点的坐标为:(1,-2).

故选:A.【题目点拨】此题考查关于x轴对称的性质,正确把握横纵坐标的关系是解题关键.9、B【分析】根据到线段两端点的距离相等的点在这条线段的垂直平分线上得出即可.【题目详解】解:∵OA=OB,∴O在线段AB的垂直平分线上,∵OC=OA,∴O在线段AC的垂直平分线上,∵OB=OC,∴O在线段BC的垂直平分线上,即O是△ABC的三边垂直平分线的交点,故选:B.【题目点拨】本题考查了对线段垂直平分线性质的理解和运用,注意:线段两端点的距离相等的点在这条线段的垂直平分线上.10、D【分析】根据勾股定理的逆定理可判定即可.【题目详解】解:A、∵12+()2=4,22=4,∴12+()2=22,∴AC=1,BC=,AB=2满足△ABC是直角三角形;B、∵32+42=25,52=25,∴32+42=52,∴AC:BC:AB=3:4:5满足△ABC是直角三角形;C、∵∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=×180°=90°,∴∠A:∠B:∠C=1:2:3满足△ABC是直角三角形;D、∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠C=×180°=75°,∴∠A:∠B:∠C=3:4:5,△ABC不是直角三角形.故选:D.【题目点拨】本题主要考查直角三角形的判定,解题关键是掌握直角三角形的判定方法.二、填空题(每小题3分,共24分)11、5【分析】如图所示,利用两圆一线的方法,判断点M的个数即可.【题目详解】解:如图,分别以A,Q为圆心,以AQ长度为半径画出两个较大的圆,此时x轴上的点满足与A,Q组成等腰三角形有5个,y轴上的点均可满足与A,Q组成等腰三角形,然后分别以A,P为圆心以AP的产生古为半径画出两个较小的圆,此时坐标轴上只有x轴上的点满足与A,P组成等腰三角形,因此点恰使,均为等腰三角形共有5个.【题目点拨】此题主要考查等腰三角形的性质和坐标与图形的性质,解答此题的关键是利用等腰三角形性质判断相关的点.12、80°或40°【分析】根据已知条件,先设出三角形的两个角,然后进行讨论,列方程求解即可.【题目详解】解:在等腰△ABC中,设∠A=x,∠B=x+30°,分情况讨论:当∠A=∠C为底角时,2x+(x+30°)=180°,解得x=50°,则顶角∠B=80°;当∠B=∠C为底角时,2(x+30°)+x=180°,解得x=40°,即顶角∠A=40°.故这个等腰三角形的顶角的度数为80°或40°.故答案为80°或40°.【题目点拨】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.13、1【分析】把给的算式进行因式分解后再计算即可.【题目详解】20192-20182=(2019+2018)()=2019+2018=1.故答案为:1.【题目点拨】本题考查有理数的乘方运算,关键是利用因式分解可简化运算.14、105°.【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【题目详解】如图,∠ECD=45°,∠BDC=60°,∴∠COB=∠ECD+∠BDC=45°+60°=105°.故答案为:105°.【题目点拨】此题考查三角形外角的性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质是解题的关键.15、【分析】设甲用了x小时到达B地,则乙用了小时到达B地,然后根据甲比乙每小时多行3千米即可列出方程.【题目详解】解:设甲用了x小时到达B地,则乙用了小时到达B地由题意得:.故答案为.【题目点拨】本题考查了分式方程的应用,弄清题意、明确等量关系成为解答本题的关键.16、轴【解题分析】两点的横坐标互为相反数,纵坐标相等,那么过这两点的直线平行于x轴,两点到y轴的距离均为11,由此即可得出答案.【题目详解】∵两点的横坐标互为相反数,纵坐标相等,∴点A(11,12)与点B(-11,12)关于y轴对称,故答案为:y轴.【题目点拨】本题考查了关于x轴、y轴对称的点的坐标,熟知“横坐标相等,纵坐标互为相反数的两点关于x轴对称;横坐标互为相反数,纵坐标相等的两点关于y轴对称”是解题的关键.17、【分析】可过点P作PE⊥OB,由角平分线的性质可得,PD=PE,进而可得出结论.【题目详解】如图,过点P作PE⊥OB,∵OC是∠AOB的平分线,点P在OC上,且PD⊥OA,PE⊥OB,∴PE=PD,又∵PD=,∴PE=PD=.故答案为:.【题目点拨】本题考查了角平分线的性质;要熟练掌握角平分线的性质,即角平分线上的点到角两边的距离相等.18、-4【分析】分式等于零时:分子等于零,且分母不等于零.【题目详解】由分式的值为零的条件得且,由,得,由,得,综上所述,分式的值为0,的值是−4.故答案为:−4.【题目点拨】此题考查分式的值为零的条件,解题关键在于掌握其性质.三、解答题(共66分)19、(1)证明见解析;(2).【分析】(1)由BD平分∠ABC,得到∠ABD=∠DBC,根据平行线的性质得到∠EDB=∠DBC,由等腰三角形的判定定理得到BE=ED;同理可证:CF=DF,由线段的和差和等量代换即可得到结论;(2)同(1)可得,,从而可得出结论.【题目详解】(1)证明:,,又平分,,,.同理可证:,;(2)解:同(1)可得,,,∴.即、、之间的等量关系为:.【题目点拨】本题考查了等腰三角形的判定和性质,平行线的判定和性质,熟练掌握等腰三角形的判定和性质是解题的关键.20、(1)5;(2)【分析】(1)通过证明四边形ABMD是正方形,可得DM=BM=AB=4,CM=3,由勾股定理可求CD的长.(2)由折叠的性质可得EF=CE,DC=DF=5,由“HL“可证Rt△ADF≌Rt△MDC,可得AF=CM=3,由勾股定理可求EC的长,即可求解.【题目详解】解:(1)过点D作DM⊥BC于M.∵AD∥BC,∠B=90°,∴∠A=90°,且∠B=90°,DM⊥BC,∴四边形ABMD是矩形,且AD=AB,∴四边形ABMD是正方形.∴DM=BM=AB=4,CM=3,在Rt△DMC中,CD===5,(2)∵将△CDE沿DE折叠,∴EF=CE,DC=DF=5,且AD=DM,∴Rt△ADF≌Rt△MDC(HL),∴AF=CM=3,∴BF=1,∵EF2=BF2+BE2,∴CE2=1+(7-CE)2,∴CE=∴S△FED=×CE×DM=×=【题目点拨】本题考查了折叠的性质,正方形的判定,全等三角形的判定和性质,勾股定理,求出DM的长是本题的关键.21、(1)(2)当时,原式=8(答案不唯一)【分析】(1)由于两个因式的分母相同,因此直接分子作减法,此时刚好分子和分母有共同的因式,故约分消掉即可得出答案;(2)先化简,再求值,化简过程中注意合并同类项,最后取适当的值的时候切记考虑原式,确保分式有意义,即分母不为0.【题目详解】(1)原式(2)原式若当时,原式=8(本题答案不唯一,切记x不能为-1,1,和0)【题目点拨】本题关键在于化简多项式时,取适当的值的时候切记考虑原式,确保分式有意义,即分母不为0.22、(1)见解析;(2)1【分析】(1)证明∠ABC=∠DBE,根据ASA可证明△ABC≌△DBE即可;

(2)根据全等三角形的性质求出BE、DE,再由AD求出CD,根据三角形的周长公式计算即可.【题目详解】解:(1)证明:∵∠ABD=∠CBE,

∴∠ABC=∠DBE,

∵∠A=∠BDE,AB=BD,

∴△ABC≌△DBE(ASA);

(2)∵△ABC≌△DBE,

∴DE=AC=5,BE=BC=4,∵AD=2,∴CD=AC-AD=3,

∴△CDP和△BEP的周长和=CD+DP+CP+BP+PE+BE=CD+DE+BC+BE=1.【题目点拨】本题考查的是全等三角形的性质、三角形内角和定理的应用,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.23、(1)a=1;(2)①s=–3t+2;②t=.【解题分析】(1)根据路程=速度×时间即可求出a值;(2)①根据速度=路程÷时间求出此人返回时的速度,再根据路程=1-返回时的速度×时间即可得出AB所在直线的函数解析式;②令①中的函数关系式中s=0,求出t值即可.【题目详解】(1)a=4×2=1.(2)①此人返回的速度为(1–5)÷(1.75–)=3(千米/小时),AB所在直线的函数解析式为s=1–3(t–2)=–3t+2.②当s=–3t+2=0时,t=.答:此人走完全程所用的时间为小时.【题目点拨】本题考查了一次函数的应用,解题的关键是:(1)根据路程=速度×时间求出a值;(2)①根据路程=1-返回时的速度×时间列出s与t之间的函数解析式;②令s=0求出t值.24、(1)证明见解析;(2)CF=BD,CF⊥BD.理由见解析.【分析】(1)根据已知条件证明∠CAF=∠BAD,即可得到△ACF≌△ABD;(2)根据等腰三角形的性质证明∠CAF=∠BAD,证明△ACF≌△ABD,CF=BD,∠ACF=∠B,即可得结果;【题目详解】解:(1)∵∠BAC=90°,△ADF是等腰直角三角形,∴∠CAF+∠CAD=90°,∠BAD+∠ACD=90°,AD=AF,∴∠CAF=∠BAD,在△ACF和△ABD中,AB=AC,∠CAF=∠BAD,AD=AF,∴△ACF≌△ABD(SAS),(2)CF=BD,CF⊥BD.理由如下:∵△ADF是等腰直角三角形,∴AD=AF,∵∠CAB=∠DAF=90°,∴∠CAB+∠CAD=∠DAF+∠CAD,即∠CAF=∠BAD,在△ACF和△ABD中,AB=AC,∠CAF=∠BAD,AD=AF,∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠B,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∴∠BCF=∠ACF+∠ACB=45°+45°=90°,∴CF⊥BD,∴CF=BD,CF⊥BD.【题目点拨】本题主要考查了三角形知识点综合,准确根据全等证明是解题的关键.25、(1)证明见解析;(2)证明见解析.【分析】(1)要证明BD=CE,只要证明△ABD≌△ACE即可,两三角形中,已知的条件有AD=AE,AB=AC,那么只要再得出两对应边的夹角相等即可得出三角形全等的结论.我们发现∠BAD和∠EAC都是90°加上一个∠CAD,因此∠CAE=∠BAD.由此构成了两三角形全等中的(SAS)因此两三角形全等.(2)要证BD⊥CE,只要证明∠BMC是个直角就行了.由(1)得出的全等三角形我们可知:∠ABN=∠ACE,三角形ABC中,∠ABN+∠CBN+∠BCN=90°,根据上面的相等角,我们可得出∠ACE+∠CBN+∠BCN=90°,即∠ABN+∠ACE=90°,因此∠BMC就是直角.【题目详解】证明:(1)∵∠BAC=∠DAE=90°∴∠BAC+∠CAD=∠DAE+∠CAD即∠CAE=∠BAD在△ABD和△ACE中∴△ABD≌△ACE(SAS)∴BD=CE(2)∵△ABD≌△ACE∴∠ABN=∠ACE∵∠ANB=∠CND∴∠ABN+∠ANB=∠CND+∠NCE=90°∴∠CMN=90°即BD⊥CE.【题目点拨】此题考查了等腰直角三角形的性质,全等三角形的判定,利用全等三角形得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论