高分子物理名词解释_第1页
高分子物理名词解释_第2页
高分子物理名词解释_第3页
高分子物理名词解释_第4页
高分子物理名词解释_第5页
已阅读5页,还剩25页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2一章高分子链的结构指组成高分子的不同尺度的结构单元在空间相对排列,包括高分子的链结构和聚集态结构。表明一个高分子链中原子或基团的几何排列情况。指高分子整体的内部结构,包括晶态结构、非晶态结构、取向态结构、液晶态结构和织态结指单个大分子内一个或几个结构单元的化学结构和立体化学结构。指单个高分子的大小和在空间所存在的各种形状称为远程结构除非通过化学键的断裂和生成新的化学键才能改变的分子结构为化学结构。而一个分子或其基团对另一个分子的相互作用分子中各原子在空间的相对位置和排列叫做构型,这种化学结构不经过键的破坏或生成是不结构单元-CH2--C*HR-型的高分子,由于每一个结构单元含有一个C*,因此,它们在高分子链中有三中键接方式,即全同、间同、无规立构,此即为旋光异构。结构单元-CH2--C*HR-型的高分子,由于每一个结构单元含有一个C*,因此,它们在高分子结构单元-CH2--C*HR-型的高分子,由于每一个结构单元含有一个C*,因此,它们在高分子C即为间同立构。结构单元-CH2--C*HR-型的高分子,由于每一个结构单元含有一个C*,因此,它们在高分子C,此即为无规立构。3全同和间同立构高分子统称为有规立构。全同立构高分子或全同立构高分子和间同立构高分子在高聚物中的百分含量。当主链上存在双键时,而组成双键的两个碳原子同时被两个不同的原子或基团取代时,即可形成顺反异构,此即为几何异构。当主链上存在双键时,而组成双键的两个碳原子同时被两个不同的原子或基团取代时,即可形成顺反异构,此即为几何异构。如头头、头尾异构,异构化聚合,共聚合等。在多种结构单元组成的高分子链中,一种结构单元构成的链段称为序列。在多种结构单元组成的高分子链中,一种结构单元构成的链段称为序列,显然各个序列的长度是不同的,这种序列的长度的多分散性称为序列分布。在多种结构单元组成的高分子链中,一种结构单元构成的链段称为序列,显然各个序列的长度是不同的,若按数量进行统计平均所得到的序列长度。指支化点的密度或两相邻支化点间链的平均分子量相邻两个交联点之间的链的平均分子量(Mc)或交联点的密度。两种不同的单体各自聚合形成的网络互相贯穿,称为互穿网络高分子。当一线形聚合物在另一聚合物网络形成时均匀分散其中,宏观上成为一整体,称为半互穿网由于单键的内旋转而产生的分子中原子在空间位置上的变化叫做构象4转,这种现象被称为单键内旋转。高分子上划分出来的可以任意取向的最小链单元,即高分子链上能够独立运动的最小单元。用高分子链上相邻链段间的相互作用称为近程相互作用作用高分子链上非相邻链段间的相互作用远程相互作用单键内旋转导致高分子链呈卷曲构象,我们称这种不规则地卷曲的高分子链的构象为无规线所谓高分子链的柔顺性,正是高分子链能够改变其构象的性质。指热力学平衡条件下的柔性,取决于反式与旁式构象间的能量差△utg。在外界条件影响下,从一种平衡态构象向另一种平衡态构象转变的难易程度,转变速度取决于位能曲线上反式与旁式构象之间转变的位垒△ub。→直线型高分子链的一段至另一端的直线距离,以h表示。的平均值为均方末端距,用_径_Z_S2=1/Z(ΣS2i)i=15自由结合链末端距分布符合高斯函数的高分子链称为高斯链。在条件下测得的高分子的尺寸称为无扰尺寸,只有无扰尺寸才是高分子本身结构的反映。___Cnho2/nl2_高分子链上非键合原子或基团之间存在着排斥力,这种力称为一级近程排斥力。相邻结构单元上的非键合原子或基团间的相互作用称为二级近程排斥力指加热时可以塑化、冷却时则固化成型,能如此反复重复的受热行为。子阶段,在成型加工阶段后,聚合物固化,继续加热时不再塑化,这种行为称为热固性聚合物。度用热力学方法测定的链段长度称为热力学链段长度。长度用动力学方法测定的链段长度称为动力学链段长度。6第二章聚合物的凝聚态结构把一摩尔液体或固体分子移到其分子引力范围之外所需要的能量称为内聚能,单位体积的内称为内聚能密度。当物质内部的质点(可以是原子、分子、离子)在三维空间呈周期性地重复排列时,该物质把组成晶体的质点抽象成为几何点,由这些等同的几何点的集合所形成的格子,称为空间格尺寸从几微米到几毫米,在正交偏振片作用下呈现黑十字消光现象。消光现象可以得知其有四个消光位置,呈现出典型的黑十字图像。将高聚物熔体骤冷的加工工艺过程称为淬火。温的情况下长时间热处理,通过链的调整消除内应力,使分子链排列更加规整。液晶是某些物质在熔融态或在溶液状态下所形成的有序流体的总称在某些外场(如拉伸应力或剪切应力)作用下高分子链、链段或微晶可以沿着外场方向有序称为取向。两种(种或两种以上)高聚物通过机械共混或溶液共混或熔体共混等方法制得的共混物。7一种材料与另外一种材料亲合性的好坏称为相容性,亲合性的好坏可由混合自由能来判定。高抗冲聚苯乙烯,是聚苯乙烯接枝聚丁二烯(或其他橡胶)或聚苯乙烯与聚丁二烯(或其他的共混物。高聚物树脂与其他增强材料复合,使高分子材料的力学性能显著提高,这种材料通常被成为如果在聚合物基体中加入第二相物质所形成的材料称为复合材料,或连续的高聚物相和不连续的填充剂相构成的材料通称为复合材料。能对特定聚合物起补强作用的填充剂统称为活性填料能对特定聚合物起补强作用的填充剂统称为活性填料,而有些填料的引入往往会降低聚合物性填料。章、高分子溶液溶剂分子渗入高聚物内部,即溶剂分子和高分子的某些链段混合,使高分子体积膨胀,这种胀。溶剂分子渗入高聚物内部,即溶剂分子和高分子的某些链段混合,使高分子体积膨胀,同时高分子也缓慢地向溶剂中扩散,若这一过程的最终结果是形成了高聚物溶剂均匀分散体系,称为无限溶胀溶剂分子渗入高聚物内部,即溶剂分子和高分子的某些链段混合,使高分子体积膨胀,对于交联高聚物,随着链构象的改变所产生的回弹力将阻止这一过程的进行,溶胀达到平衡,故为有限溶胀。定义内聚能密度的平方根为溶度参数,单位为(J/cm3)1/2。引常数把组合量(ΔE·V)1/2=F称为摩尔吸引常数(其中V为结构单元的摩尔体积)8能体积分数。高分子稀溶液溶剂化学位变化中非理想的部分。将高聚物溶胀后的体积与溶胀前的体积之比称为溶胀度数_表征了高分子链段与溶剂分子之间的相互作用。如果链段间的相互作用力等于链段与溶剂的相互作用力,这一状态即为θ溶液的微观状态。链段间的相互作用力等于链段与溶剂的相互作用力,这一状态即为θ溶液的微观状态。则该溶剂即为此种高聚物的θ溶剂。链段间的相互作用力等于链段与溶剂的相互作用力,这一状态即为θ溶液的微观状态。则该时的温度即为此种高聚物的θ温度。高聚物溶液失去流动性时即成为冻胶或凝胶,冻胶是由范德华力交联形成的,加热时冻胶溶解,冷却时冻胶形成。9高聚物溶液失去流动性时即成为冻胶或凝胶,凝胶是高分子链之间以化学键形成的交联结构溶解也不能熔融。第四章、聚合物的分子量和分子量分布将高聚物按分子量大小进行分级,所得到的各个部分被称为级分。由于高聚物具有多分散性,相同分子量的大分子的摩尔数与各种分子量的大分子的摩尔总数Mn=nNiMi/nNiii=1_MW=nWiMi/nWii=1i=1_子量_nMw={ΣWiMia}1/annMz=WiMi2/WiMnni1i=1_其分子量分散情况称为分子量分布。是指试样中各种分子量与平均分子量之间的差值的平方平均值。limspclimlnrc表示高分子单位浓度的增加对溶液增比粘度或相对粘度对数的第五章、聚合物的转变与松弛变非晶态高聚物从玻璃态进入高弹态或从高弹态回到玻璃态的转变区称为玻璃转变。非晶态高聚物从高弹态进入粘流态或从粘流态回到高弹态的转变区称为粘流转变。度非晶态高聚物从玻璃态进入高弹态或从高弹态回到玻璃态的转变区称为玻璃转变,这一转变。非晶态高聚物从高弹态进入粘流态或从粘流态回到高弹态的转变区称为粘流转变,这一转变液体或固体,它的整个体积包括两部分,一部分是为分子本身占据的,称占据体积;另一部分子间的空隙,称为自由体积。转变称为一级相转变。玻璃化转变的多维性如果保持温度不变,改变其他因素,我们也能观察到玻璃化转变现象,这就是玻璃化转变的在玻璃化转变温度以下,尽管链段运动被冻结了,但还存在着需要能量更小的小尺寸运动单运动,这种运动称为次级转变。通过共聚引入软单体,其共聚物的Tg较原有均聚物显著下降,其他性能也得到改善,这种通过向高聚聚树脂中引入小分子增塑剂,使共混物的Tg较高聚物树脂有显著下降,其他性到改善,这种方法称为外增塑。间谱因为高聚物中每一根分子键所处的状态及构象不尽相同。再加上运动单元具有多重性,分子量具有多分散性,所以高聚物松弛时间的变化范围是很宽的,短的可达10-3s,长的可达晶态高聚物熔化过程中,开始熔化时的温度到熔化完成时的温度称为熔限。、橡胶弹性当材料受到外力作用而所处的条件使其不能产生惯性移动时,它的几何形状和尺寸将发生变,这种变化就称为应变。材料发生宏观变形时,材料内部将产生一种附加内力,单位面积上的附加内力称为应力。拉伸试验中材料横向单位宽度的减少与纵向单位长度的增加之比值。高聚物处在高弹态时所表现出的独特的力学性能称为高弹性时体现的弹性即为能弹性。当材料受到外力作用时,外力所做的功使材料的熵减少,分子链的构象发生了改变,当除去外力后,链构象恢复,材料对环境做功,这时体现的弹性即为熵弹性。在外力作用下,高聚物材料的形变行为介于弹性材料和粘性材料之间,这种行为反映了固体液体的粘性两者的组合。这就是粘弹性。第七章、聚合物的粘弹性象若应力或应变不是时间的函数,这时研究的力学松弛现象称为静态粘弹现象。若应力或应变是时间的函数,这时研究的力学松弛现象称为动态粘弹现象。性如果高聚物的粘弹性是由理想固体的弹性和理想液体的粘性组合起来的,这种粘弹性为线性如果物体的粘弹性行为不符合理想固体的弹性和理想液体的粘性两个定律的组合,这种粘弹线性粘弹性在一定温度下,当固定应力时,观察形变随时间延长而逐渐增加的现象称为蠕变。迟时间松驰到ε(∞)的(1-1/e)倍所需的时间。在一定温度下,当固定形变时,观察应力随时间的延长而逐渐衰减的现象。在一定的温度和交变应力作用下,应变滞后于应力的现象称为滞后。由于滞后,在每一个循环中就有能量的损失,称之为内耗。从高分子运动的松弛性质可以知道,同一个力学松弛现象,既可以在较高的温度下、在较短的时间内观察到,也可以在较低的温度下、在较长时间内观察到。因此,升高温度与延长观察时间对观察分子运动是等效的,对高聚物的粘弹行为也是等效的。这就是时温等效原理。此原理指出,高聚物的蠕变是整个负荷历史的函数,每个负荷对高聚物的蠕变的贡献是独立的,因而各个负荷的总的效应等于各个负荷效应的加和,最终的形变是各负荷所贡献形变的第八章、聚合物的屈服于断裂现象,化化在应变硬化过程中,其形变是不可逆的,产生永久形变,这时候的粘流是在强大外力作用下及室温下发生的分子链的位移。但应力超过比例极限后,应力、应变之间不在保持线性关系,张应力达到某一最大值时(Y材料在出现屈服点以后发生的断裂或破坏称为韧性破坏高聚物材料在屈服点之前的断裂称为脆性破坏玻璃态高聚物在大应力作用下发生的这种大形变,其本质与橡胶的高弹形变一样,但表现形式却有差别。为了与普通的高弹形变区别开来。通常称其为强迫高弹形变。结晶高聚物和玻璃态高聚物的拉伸过程造成的大形变,本质上都是高弹形变,通常把他们统晶态高聚物在拉伸过程中,当达到一定拉伸程度时,试样的一处或几处突然变细,在继续的拉伸过程中,细的部分横结面积和粗的部分横结面积均保持不变,只是二者的长度一个增加一个减少,这种现象即为细颈。是在拉伸应力作用下高聚物中某些薄弱部位由于应力集中而产生的空化条纹状形变区。在透明玻璃态高聚物中,这些条纹状形变区的平面强烈地反射可见光,并且由于条纹状形变区内银纹往往非常稠密,则材料表面可形成一片银色的闪光,因此习惯上称为银纹。如果材料存在缺陷,受力时材料内部的应力平均分布状态将发生变化,使缺陷附近局部范围内的应力急剧地增加,远远地超过应力平均值,这种现象称为应力集中。在规定的实验温度、湿度和实验速度下,在标准式样上沿轴向施加拉伸载荷直到式样被拉断在规定实验条件下,对标准式样施加静弯曲力矩,直到式样折断为止,取实验过程中的最大式中δ叫挠度,是式样着力处的位移是衡量材料韧性的一种强度指标,表征材料抵抗冲击载荷破环的能力。通常定义为式样受冲击载荷而折断时单位截面积所吸收的能量是衡量材料表面抵抗机械压力的能力的一种指标。因压头的形状的不同和计算方法的不同又有布氏、洛氏和邵氏等名称。第九章、聚合物的流变性牛顿流动定律η=τ/.许多液体包括高聚物的熔体和浓溶液,高聚物分散体系(如胶乳)以及填充体系等并不符合牛顿流动定律,这类液体通称为非牛顿流体。大多数高聚物熔体或浓溶液的粘度是随着剪切应力或剪切速率的变化而变化的,即形变包括了可逆的弹性形变和不可逆的塑性形变,因此,特定剪切速率下的艿度被称为表观粘度。在低切变速率下,流动

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论