北京市东城区第五十中学2023年高二上数学期末教学质量检测试题含解析_第1页
北京市东城区第五十中学2023年高二上数学期末教学质量检测试题含解析_第2页
北京市东城区第五十中学2023年高二上数学期末教学质量检测试题含解析_第3页
北京市东城区第五十中学2023年高二上数学期末教学质量检测试题含解析_第4页
北京市东城区第五十中学2023年高二上数学期末教学质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市东城区第五十中学2023年高二上数学期末教学质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在平形六面体中,其中,,,,,则的长为()A. B.C. D.2.已知双曲线C:-=1的焦距为10,点P(2,1)在C的渐近线上,则C的方程为A.-=1 B.-=1C.-=1 D.-=13.椭圆的长轴长是()A.3 B.6C.9 D.44.如图所示,向量在一条直线上,且则()A. B.C. D.5.已知是偶函数的导函数,.若时,,则使得不等式成立的的取值范围是()A. B.C. D.6.若,,,则a,b,c与1的大小关系是()A. B.C. D.7.在三棱柱中,,,,则这个三棱柱的高()A1 B.C. D.8.在等差数列中,已知,则数列的前6项之和为()A.12 B.32C.36 D.379.已知圆与圆外切,则()A. B.C. D.10.为了更好地解决就业问题,国家在2020年提出了“地摊经济”为响应国家号召,有不少地区出台了相关政策去鼓励“地摊经济”.某摊主2020年4月初向银行借了免息贷款8000元,用于进货,因质优价廉,供不应求,据测算:每月获得的利润是该月初投入资金的20%,每月底扣除生活费800元,余款作为资金全部用于下月再进货,如此继续,预计到2021年3月底该摊主的年所得收入为()(取,)A.24000元 B.26000元C.30000元 D.32000元11.若函数在区间内存在单调递增区间,则实数的取值范围是()A. B.C. D.12.在等差数列{an}中,a1=1,,则a7=()A.13 B.14C.15 D.16二、填空题:本题共4小题,每小题5分,共20分。13.设,分别是椭圆C:的左、右焦点,点M为椭圆C上一点且在第一象限,若为等腰三角形,则M的坐标为___________14.过抛物线:的焦点的直线交于,两点,若,则线段中点的横坐标为______15.若方程表示焦点在y轴上的双曲线,则实数k的取值范围是______16.射击队某选手命中环数的概率如下表所示:命中环数10987概率0.320.280.180.120.1该选手射击两次,两次命中环数相互独立,则他至少命中一次9环或10环的概率为_________________.(结果用小数表示)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线的焦点,点在抛物线上.(1)求;(2)过点向轴作垂线,垂足为,过点的直线与抛物线交于两点,证明:为直角三角形(为坐标原点).18.(12分)已知函数f(x)=ax3+bx2﹣3x在x=﹣1和x=3处取得极值.(1)求a,b的值(2)求f(x)在[﹣4,4]内的最值.19.(12分)已知直线与双曲线相交于、两点.(1)当时,求;(2)是否存在实数,使以为直径的圆经过坐标原点?若存在,求出的值;若不存在,说明理由.20.(12分)已知函数(1)讨论函数的单调性;(2)若函数有两个零点,,证明:21.(12分)为深入学习贯彻总书记在党史学习教育动员大会上的重要讲话精神和中共中央有关决策部署,推动教育系统围绕建党百年重大主题,深化中学在校师生理想信念教育,引导师生学史明理、学史增信、学史崇德、学史力行,以昂扬的状态迎接中国共产党建党周年,哈工大附中高二年级组织本年级同学开展了一场党史知识竞赛.为了解本次知识竞赛的整体情况,随机抽取了名学生的成绩作为样本进行统计,得到如图所示的频率分布直方图(1)求直方图中a的值,并求该次知识竞赛成绩的第50百分位数(精确到0.1);(2)已知该样本分数在的学生中,男生占,女生占现从该样本分数在的学生中随机抽出人,求至少有人是女生的概率.22.(10分)区块链技术被认为是继蒸汽机、电力、互联网之后,下一代颠覆性的核心技术区块链作为构造信任的机器,将可能彻底改变整个人类社会价值传递的方式,2015年至2019年五年期间,中国的区块链企业数量逐年增长,居世界前列现收集我国近5年区块链企业总数量相关数据,如表年份20152016201720182019编号x12345企业总数量y(单位:千个)2.1563.7278.30524.27936.224注:参考数据,,,(其中).附:样本的最小二乘法估计公式为,(1)根据表中数据判断,与(其中,为自然对数的底数),哪一个回归方程类型适宜预测未来几年我国区块链企业总数量?(给出结果即可,不必说明理由)(2)根据(1)的结果,求y关于x的回归方程;(3)为了促进公司间的合作与发展,区块链联合总部决定进行一次信息化技术比赛,邀请甲、乙、丙三家区块链公司参赛比赛规则如下:①每场比赛有两个公司参加,并决出胜负;②每场比赛获胜的公司与未参加此场比赛的公司进行下一场的比赛;③在比赛中,若有一个公司首先获胜两场,则本次比赛结束,该公司就获得此次信息化比赛的“优胜公司”,已知在每场比赛中,甲胜乙的概率为,甲胜丙的概率为,乙胜丙的概率为,若首场由甲乙比赛,则求甲公司获得“优胜公司”的概率.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据空间向量基本定理、加法的运算法则,结合空间向量数量积的运算性质进行求解即可.【详解】因为是平行六面体,所以,所以有:,因此有:,因为,,,,,所以,所以,故选:B2、A【解析】由题意得,双曲线的焦距为,即,又双曲线的渐近线方程为,点在的渐近线上,所以,联立方程组可得,所以双曲线的方程为考点:双曲线的标准方程及简单的几何性质3、B【解析】根据椭圆方程有,即可确定长轴长.【详解】由椭圆方程知:,故长轴长为6.故选:B4、D【解析】根据向量加法的三角形法则得到化简得到故答案为D5、C【解析】构造函数,分析函数在上的单调性,将所求不等式变形为,可得出关于的不等式,即可得解.【详解】构造函数,其中,则,所以,函数为上的奇函数,当时,,且不恒为零,所以,函数在上为增函数,且该函数在上也为增函数,故函数在上为增函数,因为,则,由得,可得,解得故选:C.6、C【解析】根据条件构造函数,并求其导数,判断该函数的单调性,据此作出该函数的大致图象,由图象可判断a,b,c与1的大小关系.【详解】令,则当时,,当时,即函数在上单调递减,在上单调递增,而,由可知,故作出函数大致图象如图:由图象易知,,故选:C.7、D【解析】先求出平面ABC的法向量,然后将高看作为向量在平面ABC的法向量上的投影的绝对值,则答案可求.【详解】设平面ABC的法向量为,而,,则,即有,不妨令,则,故,设三棱柱的高为h,则,故选:D.8、C【解析】直接按照等差数列项数性质求解即可.【详解】数列的前6项之和为.故选:C.9、D【解析】根据两圆外切关系,圆心距离等于半径的和列方程求参数.【详解】由题设,两圆圆心分别为、,半径分别为1、r,∴由外切关系知:,可得.故选:D.10、D【解析】设,从4月份起每月底用于下月进借货的资金依次记为,由题意得出的递推关系,变形构造出等比数列,由得其通项公式后可得结论【详解】设,从4月份起每月底用于下月进借货的资金依次记为,,、同理可得,所以,而,所以数列是等比数列,公比为,所以,,总利润为故选:D【点睛】思路点睛:本题考查数列的实际应用.解题方法是用数列表示月初进货款,得出递推关系,然后构造等比数列求解11、D【解析】求出函数的导数,问题转化为在有解,进而求函数的最值,即可求出的范围.【详解】∵,∴,若在区间内存在单调递增区间,则有解,故,令,则在单调递增,,故.故选:D.12、A【解析】利用等差数列的基本量,即可求解.【详解】设等差数列的公差为,,解得:,则.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先计算出,所以,利用余弦定理求出,即可求出,即得到M的横坐标为,代入椭圆C:求出.【详解】椭圆C:,所以.因为M在椭圆上,.因为M在第一象限,故.为等腰三角形,则,所以,由余弦定理可得.过M作MA⊥x轴于A,则所以,即M的横坐标为.因为M为椭圆C:上一点且在第一象限,所以,解得:所以M的坐标为.故答案为:14、【解析】根据题意,作出抛物线的简图,求出抛物线的焦点坐标以及准线方程,分析可得为直角梯形中位线,由抛物线的定义分析可得答案【详解】如图,抛物线的焦点为,准线为,分别过,作准线的垂线,垂足为,,则有过的中点作准线的垂线,垂足为,则为直角梯形中位线,则,即,解得.所以的横坐标为故答案为:15、【解析】由题可得,即求.【详解】因为方程表示焦点在轴上的双曲线,则,解得.故答案为:.16、84【解析】先求出该选手射击两次,两次命中的环数都低于9环的概率,由对立事件的概率可得答案.【详解】该选手射击一次,命中的环数低于9环的概率为该选手射击两次,两次命中的环数都低于9环的概率为所以他至少命中一次9环或10环的概率为故答案:0.84三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】(1)点代入即可得出抛物线方程,根据抛物线的定义即可求得.(2)由题,设直线的方程为:,与抛物线方程联立,可得,利用韦达定理证得即可得出结论.【小问1详解】点在抛物线上.,则,所以.【小问2详解】证明:由题,设直线的方程为:,点联立方程,消得:,由韦达定理有,由,所以,所以,所以,所以为直角三角形.18、(1)a,b=﹣1(2)f(x)min=,f(x)max=【解析】(1)先对函数求导,由题意可得=3ax2+2bx﹣3=0的两个根为﹣1和3,结合方程的根与系数关系可求,(2)由(1)可求,然后结合导数可判断函数的单调性,进而可求函数的最值.【详解】解:(1)=3ax2+2bx﹣3,由题意可得=3ax2+2bx﹣3=0的两个根为﹣1和3,则,解可得a,b=-1,(2)由(1),易得f(x)在,单调递增,在上单调递减,又f(﹣4),f(﹣1),f(3)=﹣9,f(4),所以f(x)min=f(﹣4),f(x)max=f(﹣1).【点睛】本题考查利用极值求函数的参数,以及利用导数求函数的最值问题,属于中档题19、(1);(2)不存在,理由见解析.【解析】(1)当时,将直线的方程与双曲线的方程联立,列出韦达定理,利用弦长公式可求得;(2)假设存在实数,使以为直径的圆经过坐标原点,设、,将直线与双曲线的方程联立,列出韦达定理,由已知可得出,利用平面向量数量积的坐标运算结合韦达定理可得出,即可得出结论.【小问1详解】解:设点、,当时,联立,可得,,由韦达定理可得,,所以,.【小问2详解】解:假设存在实数,使以为直径的圆经过坐标原点,设、,联立得,由题意可得,解得且,由韦达定理可知,因为以为直径的圆经过坐标原点,则,所以,,整理可得,该方程无实解,故不存在.20、(1)函数的单调性见解析;(2)证明见解析.【解析】(1)求出函数的导数,按a值分类讨论判断的正负作答.(2)将分别代入计算化简变形,再对所证不等式作等价变形,构造函数,借助函数导数推理作答.【小问1详解】已知函数的定义域为,,当时,恒成立,所以在区间上单调递增;当时,由,解得,由,解得,的单调递增区间为,单调递减区间为,所以,当时,在上单调递增,当时,在上单调递增,在上单调递减.【小问2详解】依题意,不妨设,则,,于是得,即,亦有,即,因此,,要证明,即证,即证,即证,即证,令,,,则有在上单调递增,,,即成立,所以.【点睛】思路点睛:涉及双变量的不等式证明问题,将所证不等式等价转化,构造新函数,再借助导数探讨函数的单调性、极(最)值问题处理.21、(1)(2)【解析】(1)利用频率和为1求出a;利用百分位数的定义求出知识竞赛成绩的第50百分位数;(2)先利用分层抽样求出男、女生的人数,利用古典概型求概率.【小问1详解】,由,解得设该次知识竞赛成绩的第50百分位数为x,则,解得:.即该次知识竞赛成绩的第50百分位数为【小问2详解】由频率分布直方图可知:分数在)的人数有人,所以这人中,女生有人,记为、,男生有人,记为、、、从这人中随机选取人,基本事件

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论