鄂州市重点中学2024届数学高一下期末学业质量监测试题含解析_第1页
鄂州市重点中学2024届数学高一下期末学业质量监测试题含解析_第2页
鄂州市重点中学2024届数学高一下期末学业质量监测试题含解析_第3页
鄂州市重点中学2024届数学高一下期末学业质量监测试题含解析_第4页
鄂州市重点中学2024届数学高一下期末学业质量监测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

鄂州市重点中学2024届数学高一下期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.根据频数分布表,可以估计在这堆苹果中,质量大于130克的苹果数约占苹果总数的()分组频数13462A. B. C. D.2.函数的定义域是()A. B.C. D.3.经过平面外一点和平面内一点与平面垂直的平面有()A.1个 B.2个 C.无数个 D.1个或无数个4.如图,长方体的体积为,E为棱上的点,且,三棱锥E-BCD的体积为,则=()A. B. C. D.5.黄金分割比是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值为,约为0.618,这一比值也可以表示为a=2cos72°,则=()A. B.1 C.2 D.6.已知直线平面,直线平面,下列四个命题中正确的是().()()()()A.()与() B.()与() C.()与() D.()与()7.若是等比数列,下列结论中不正确的是()A.一定是等比数列; B.一定是等比数列;C.一定是等比数列; D.一定是等比数列8.设,若关于的不等式在区间上有解,则()A. B. C. D.9.在三棱柱中,已知,,此三棱柱各个顶点都在一个球面上,则球的体积为().A. B. C. D.10.已知等差数列的公差为2,若成等比数列,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.程的解为______.12.已知cosθ,θ∈(π,2π),则sinθ=_____,tan_____.13.若满足约束条件则的最大值为__________.14.的最大值为______.15.数列满足:,,的前项和记为,若,则实数的取值范围是________16.已知则sin2x的值为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥中,底面是矩形,底面,是的中点,已知,,,求:(1)直线与平面所成角的正切值;(2)三棱锥的体积.18.已知函数.(1)求的最小正周期和单调递增区间;(2)若方程在有两个不同的实根,求的取值范围.19.已知数列满足,,.(1)求证数列是等比数列,并求数列的通项公式;(2)设,数列的前项和,求证:20.(1)已知,且为第三象限角,求的值(2)已知,计算的值.21.如果定义在上的函数,对任意的,都有,则称该函数是“函数”.(I)分别判断下列函数:①;②;③,是否为“函数”?(直接写出结论)(II)若函数是“函数”,求实数的取值范围.(III)已知是“函数”,且在上单调递增,求所有可能的集合与

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】

根据频数分布表计算出质量大于130克的苹果的频率,由此得出正确选项.【题目详解】根据频数分布表可知,所以质量大于克的苹果数约占苹果总数的.故选:C【题目点拨】本小题主要考查频数分析表的阅读与应用,属于基础题.2、A【解题分析】

利用复合函数求定义域的方法求出函数的定义域.【题目详解】令x+(k∈Z),解得:x(k∈Z),故函数的定义域为{x|x,k∈Z}故选A.【题目点拨】本题考查的知识要点:正切函数的性质的应用,主要考察学生的运算能力和转换能力,属于基础题型.3、D【解题分析】

讨论平面外一点和平面内一点连线,与平面垂直和不垂直两种情况.【题目详解】(1)设平面为平面,点为平面外一点,点为平面内一点,此时,直线垂直底面,过直线的平面有无数多个与底面垂直;(2)设平面为平面,点为平面外一点,点为平面内一点,此时,直线与底面不垂直,过直线的平面,只有平面垂直底面.综上,过平面外一点和平面内一点与平面垂直的平面有1个或无数个,故选D.【题目点拨】借助长方体研究空间中线、面位置关系问题,能使问题直观化,降低问题的抽象性.4、D【解题分析】

分别求出长方体和三棱锥E-BCD的体积,即可求出答案.【题目详解】由题意,,,则.故选D.【题目点拨】本题考查了长方体与三棱锥的体积的计算,考查了学生的计算能力,属于基础题.5、A【解题分析】

根据已知利用同角三角函数基本关系式,二倍角公式、诱导公式化简即可求值得解.【题目详解】∵a=2cos72°,∴a2=4cos272°,可得:4﹣a2=4﹣4cos272°=4sin272°,∴2sin72°,a2cos72°•2sin72°=2sin144°=2sin36°,∴.故选:A.【题目点拨】本题主要考查了同角三角函数基本关系式,二倍角公式、诱导公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.6、D【解题分析】

∵直线l⊥平面α,若α∥β,则直线l⊥平面β,又∵直线m⊂平面β,∴l⊥m,即(1)正确;∵直线l⊥平面α,若α⊥β,则l与m可能平行、异面也可能相交,故(2)错误;∵直线l⊥平面α,若l∥m,则m⊥平面α,∵直线m⊂平面β,∴α⊥β;故(3)正确;∵直线l⊥平面α,若l⊥m,则m∥α或m⊂α,则α与β平行或相交,故(4)错误;故选D.7、C【解题分析】

判断等比数列,可根据为常数来判断.【题目详解】设等比数列的公比为,则对A:为常数,故一定是等比数列;对B:为常数,故一定是等比数列;对C:当时,,此时为每项均为0的常数列;对D:为常数,故一定是等比数列.故选:C.【题目点拨】本题主要考查等比数列的判定,若数列的后项除以前一项为常数,则该数列为等比数列.本题选项C容易忽略时这种情况.8、D【解题分析】

根据题意得不等式对应的二次函数开口向上,分别讨论三种情况即可.【题目详解】由题意得:当当当综上所述:,选D.【题目点拨】本题主要考查了含参一元二次不等式中参数的取值范围.解这类题通常分三种情况:.有时还需要结合韦达定理进行解决.9、A【解题分析】试题分析:直三棱柱的各项点都在同一个球面上,如图所示,所以中,,所以下底面的外心为的中点,同理,可得上底面的外心为的中点,连接,则与侧棱平行,所以平面,再取的中点,可得点到的距离相等,所以点是三棱柱的为接球的球心,因为直角中,,所以,即外接球的半径,因此三棱柱外接球的体积为,故选A.考点:组合体的结构特征;球的体积公式.【方法点晴】本题主要考查了球的组合体的结构特征、球的体积的计算,其中解答中涉及到三棱柱的线面位置关系、直三棱柱的结构特征、球的性质和球的体积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和学生的空间想象能力,试题有一定的难度,属于中档试题.10、B【解题分析】

通过成等比数列,可以列出一个等式,根据等差数列的性质,可以把该等式变成关于的方程,解这个方程即可.【题目详解】因为成等比数列,所以有,又因为是公差为2的等差数列,所以有,故本题选B.【题目点拨】本题考查了等比中项的性质,考查了等差数列的性质,考查了数学运算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

设,即求二次方程的正实数根,即可解决问题.【题目详解】设,即转化为求方程的正实数根由得或(舍)所以,则故答案为:【题目点拨】本题考查指数型二次方程,考查换元法,属于基础题.12、﹣2.【解题分析】

由题意利用同角三角函数的基本关系,二倍角公式,求得式子的值.【题目详解】由,,知,则,.故答案为:,.【题目点拨】本题主要考查同角三角函数的基本关系,二倍角公式的应用,属于基础题.13、【解题分析】

作出可行域,根据目标函数的几何意义可知当时,.【题目详解】不等式组表示的可行域是以为顶点的三角形区域,如下图所示,目标函数的最大值必在顶点处取得,易知当时,.【题目点拨】线性规划问题是高考中常考考点,主要以选择及填空的形式出现,基本题型为给出约束条件求目标函数的最值,主要结合方式有:截距型、斜率型、距离型等.14、3【解题分析】

由余弦型函数的值域可求得整个函数的值域,进而得到最大值.【题目详解】,即故答案为:【题目点拨】本题考查含余弦型函数的值域的求解问题,关键是明确在自变量无范围限制时,余弦型函数的值域为.15、【解题分析】

因为数列有极限,故考虑的情况.又数列分两组,故分组求和求极限即可.【题目详解】因为,故,且,故,又,即.综上有.故答案为:【题目点拨】本题主要考查了数列求和的极限,需要根据题意分组求得等比数列的极限,再利用不等式找出参数的关系,属于中等题型.16、【解题分析】

利用二倍角的余弦函数公式求出的值,再利用诱导公式化简,将的值代入计算即可求出值.【题目详解】解:∵,,则sin2x==,故答案为.【题目点拨】此题考查了二倍角的余弦函数公式,以及诱导公式的作用,熟练掌握公式是解本题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】

(1)要求直线与平面所成角的正切值,先要找到直线在平面上的射影,即在直线上找一点作平面的垂线,结合已知与图形,转化为证明平面再求解;(2)三棱锥的体积计算在于选取合适的底和高,此题以为底,与的中点的连线为高计算更为快速,从而转化为证明平面再求解.【题目详解】(1)平面,平面又,,平面,平面所以平面,所以为直线与平面所成角。易证是一个直角三角形,所以.(2)如图,设的中点为,则,平面,平面,又,,,又,,,所以平面,所以为三棱锥的高.因此可求【题目点拨】本题主要考察线面角与三棱锥体积的计算.线面角的关键在于找出直线在平面上的射影,一般转化为直线与平面的垂直;三棱锥体积的计算主要在于选择合适的底和高.18、(1)最小正周期,;(2).【解题分析】

(1)利用两角差的余弦公式、倍角公式、辅助角公式得,求得周期;(2)利用换元法令,将问题转化成方程在有两个不同的实根,再利用图象得的取值范围.【题目详解】(1),所以的最小正周期,由得:,所以的单调递增区间是.(2)令,因为,所以,即方程在有两个不同的实根,由函数的图象可知,当时满足题意,所以的取值范围为.【题目点拨】第(1)问考查三角恒等变换的综合运用;第二问考查换元法求参数的取值范围,注意在换元的过程中参数不能出错,否则转化后的问题与原问题就不等价.19、(1)证明见解析,;(2)见解析.【解题分析】

(1)根据递推关系式可整理出,从而可证得结论;利用等比数列通项公式首先求解出,再整理出;(2)根据可求得,从而得到的通项公式,利用裂项相消法求得,从而使问题得证.【题目详解】(1)由得:即,且数列是以为首项,为公比的等比数列数列的通项公式为:(2)由(1)得:又即:【题目点拨】本题考查利用递推关系式证明等比数列、求解等比数列通项公式、裂项相消法求解数列前项和的问题,属于常规题型.20、(1);(2)【解题分析】

(1)由,结合为第三象限角,即可得解;(2)由,代入求解即可.【题目详解】(1),∴,又∵是第三象限.∴(2).【题目点拨】本题主要考查了同角三角函数的基本关系,属于基础题.21、(I)①、②是“函数”,③不是“函数”;(II)的取值范围为;(III),【解题分析】试题分析:(1)根据“β函数”的定义判定.①、②是“β函数”,③不是“β函数”;(2)由题意,对任意的x∈R,f(﹣x)+f(x)≠0,故f(﹣x)+f(x)=2cosx+2a由题意,对任意的x∈R,2cosx+2a≠0,即a≠﹣cosx即可得实数a的取值范围(3)对任意的x≠0,分(a)若x∈A且﹣x∈A,(b)若x∈B且﹣x∈B,验证。(I)①、②是“函数”,③不是“函数”.(II)由题意,对任意的,,即.因为,所以.故.由题意,对任意的,,即.故实

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论