




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津市宁河区芦台第一中学2023-2024学年数学高一上期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.设,,,则下列正确的是()A. B.C. D.2.已知向量,向量,则的最大值,最小值分别是()A.,0 B.4,C.16,0 D.4,03.计算:()A.0 B.1C.2 D.34.方程组的解集是()A. B.C. D.5.的零点所在的一个区间为()A. B.C. D.6.已知集合,,则A∩B中元素的个数为()A.2 B.3C.4 D.57.函数的图象大致是A. B.C. D.8.函数是奇函数,则的值为A.0 B.1C.-1 D.不存在9.设,为两个不同的平面,,为两条不同的直线,则下列命题中正确的为()A.若,,则B.若,,则C.若,,则D.若,,则10.已知函数的图象关于直线对称,则=A. B.C. D.11.可以化简成()A. B.C. D.12.已知圆:与圆:,则两圆公切线条数为A.1条 B.2条C.3条 D.4条二、填空题(本大题共4小题,共20分)13.函数在区间上的单调性是______.(填写“单调递增”或“单调递减”)14.已知函数在区间上是增函数,则下列结论正确是__________(将所有符合题意的序号填在横线上)①函数在区间上是增函数;②满足条件的正整数的最大值为3;③.15.函数的反函数为___________.16.已知函数若存在实数使得函数的值域为,则实数的取值范围是__________三、解答题(本大题共6小题,共70分)17.已知圆过,,且圆心在直线上(1)求此圆的方程(2)求与直线垂直且与圆相切的直线方程(3)若点为圆上任意点,求的面积的最大值18.如图:PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动(Ⅰ)求三棱锥E-PAD的体积;(Ⅱ)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;(Ⅲ)证明:无论点E在边BC的何处,都有PE⊥AF19.已知函数,.(1)运用五点作图法在所给坐标系内作出在内的图像(画在答题卡上);(2)求函数的对称轴,对称中心和单调递增区间.20.如图,在四棱锥中,底面为平行四边形,,.(1)求证:;(2)若为等边三角形,,平面平面,求四棱锥的体积.21.(1)用篱笆围一个面积为的矩形菜园,当这个矩形的边长为多少时,所用篱笆最短?最短篱笆的长度是多少?(2)用一段长为的篱笆围成一个矩形菜园,当这个矩形的边长为多少时,菜园的面积最大?最大面积是多少?22.已知函数为奇函数(1)求的值;(2)当时,关于的方程有零点,求实数的取值范围
参考答案一、选择题(本大题共12小题,共60分)1、D【解析】计算得到,,,得到答案.【详解】,,.故.故选:.【点睛】本题考查了利用函数单调性比较数值大小,意在考查学生对于函数性质的灵活运用.2、D【解析】利用向量的坐标运算得到|2用θ的三角函数表示化简求最值【详解】解:向量,向量,则2(2cosθ,2sinθ+1),所以|22=(2cosθ)2+(2sinθ+1)2=8﹣4cosθ+4sinθ=8﹣8sin(),所以|22的最大值,最小值分别是:16,0;所以|2的最大值,最小值分别是4,0;故选:D【点睛】本题考查了向量的坐标运算以及三角函数解析式的化简;利用了两角差的正弦公式以及正弦函数的有界性3、B【解析】根据指数对数恒等式及对数的运算法则计算可得;【详解】解:;故选:B4、A【解析】解出方程组,写成集合形式.【详解】由可得:或.所以方程组的解集是.故选:A5、A【解析】根据零点存在性定理分析判断即可【详解】因为在上单调递增,所以函数至多有一个零点,因为,,所以,所以的零点所在的一个区间为,故选:A6、B【解析】采用列举法列举出中元素的即可.【详解】由题意,,故中元素的个数为3.故选:B【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.7、A【解析】利用函数的奇偶性排除选项B、C项,然后利用特殊值判断,即可得到答案【详解】由题意,函数满足,所以函数为偶函数,排除B、C,又因为时,,此时,所以排除D,故选A【点睛】本题主要考查了函数的图象的识别问题,其中解答中熟练应用函数的奇偶性进行排除,以及利用特殊值进行合理判断是解答的关键,着重考查了分析问题解决问题的能力,属于基础题.8、C【解析】由题意得,函数是奇函数,则,即,解得,故选C.考点:函数的奇偶性的应用.9、D【解析】根据点线面位置关系,其中D选项是面面垂直的判定定理,在具体物体中辨析剩余三个选项.【详解】考虑在如图长方体中,平面,但不能得出平面,所以选项A错误;平面,平面,但不能得出,所以选项B错误;平面平面,平面,但不能得出平面;其中D选项是面面垂直的判定定理.故选:D【点睛】此题考查线面平行与垂直的辨析,关键在于准确掌握基本定理,并应用定理进行推导及辨析.10、C【解析】因为函数的图象关于直线对称,所以,即,因此,选C.11、B【解析】根据指数幂和根式的运算性质转化即可【详解】解:,故选:B12、D【解析】求出两圆的圆心与半径,利用圆心距判断两圆外离,公切线有4条【详解】圆C1:x2+y2﹣2x=0化为标准形式是(x﹣1)2+y2=1,圆心是C1(1,0),半径是r1=1;圆C2:x2+y2﹣4y+3=0化为标准形式是x2+(y﹣2)2=1,圆心是C2(0,2),半径是r2=1;则|C1C2|r1+r2,∴两圆外离,公切线有4条故选D【点睛】本题考查了两圆的一般方程与位置关系应用问题,是基础题二、填空题(本大题共4小题,共20分)13、单调递增【解析】求出函数单调递增区间,再判断作答.【详解】函数的图象对称轴为,因此,函数的单调递增区间为,而,所以函数在区间上的单调性是单调递增.故答案为:单调递增14、①②③【解析】!由题函数在区间上是增函数,则由可得为奇函数,则①函数在区间(,0)上是增函数,正确;由可得,即有满足条件的正整数的最大值为3,故②正确;由于由题意可得对称轴,即有.,故③正确故答案为①②③【点睛】本题考查正弦函数的图象和性质,重点是对称性和单调性的运用,考查运算能力,属于中档题15、【解析】由题设可得,即可得反函数.【详解】由,可得,∴反函数为.故答案为:.16、【解析】当时,函数为减函数,且在区间左端点处有令,解得令,解得的值域为,当时,fx=x在,上单调递增,在上单调递减,从而当时,函数有最小值,即为函数在右端点的函数值为的值域为,则实数的取值范围是点睛:本题主要考查的是分段函数的应用.当时,函数为减函数,且在区间左端点处有,当时,在,上单调递增,在上单调递减,从而当时,函数有最小值,即为,函数在右端点的函数值为,结合图象即可求出答案三、解答题(本大题共6小题,共70分)17、(1)(2)或(3)【解析】(1)一般利用待定系数法,先求出圆心的坐标,再求出圆的半径,即得圆的方程.(2)先设出直线的方程,再利用直线和圆相切求出其中的待定系数.(3)一般利用数形结合分析解答.当三角形的高是d+r时,三角形的面积最大.【详解】(1)易知中点为,,∴的垂直平分线方程为,即,联立,解得则,∴圆的方程为(2)知该直线斜率为,不妨设该直线方程为,由题意有,解得∴该直线方程为或(3),即,圆心到的距离∴点睛:本题的难点在第(3)问方法的选择,选择数形结合分析解答比较方便.数形结合是高中数学里一种重要的数学思想,在解题中要灵活运用.18、(Ⅰ)(Ⅱ)平行,(Ⅲ)详见解析【解析】(1)三棱锥的体积==·=.(2)当点为的中点时,与平面平行∵在中,分别为、的中点,∴,又平面,平面,∴平面(3)证明:∵⊥平面,平面,∴,又,,平面,平面.又平面,∴.又,点是的中点,∴,又,平面,∴⊥平面.∵平面,∴.考点:本小题主要考查三棱锥体积的计算、线面平行、线面垂直等的证明,考查学生的空间想象能力和逻辑推理能力.点评:计算三棱锥体积时,注意可以根据需要让任何一个面作底面,还经常利用等体积法求三棱锥19、(1)详见解析(2)函数的对称轴为;对称中心为;单调递增区间为:【解析】(1)五点法作图;(2)整体代入求对称轴,对称中心,单调递增区间.【小问1详解】列表:0010-10020-20描点画图:【小问2详解】求对称轴:,故函数的对称轴为求对称中心:,故函数的对称中心为求单调递增区间:,故函数的单调递增区间为:20、(1)详见解析;(2)2【解析】(1)根据题意作于,连结,可证得,于是,故,然后根据线面垂直的判定得到平面,于是可得所证结论成立.(2)由(1)及平面平面可得平面,故为四棱锥的高.又由题意可证得四边形为有一个角为的边长为的菱形,求得四边形的面积后可得所求体积【详解】(1)作于,连结.∵,,是公共边,∴,∴∵,∴,又平面,平面,,∴平面,又平面,∴(另法:证明,取的中点.)(2)∵平面平面,平面平面,,∴平面又为等边三角形,,∴.又由题意得,,是公共边,∴,∴,∴平行四边形为有一个角为的边长为的菱形,∴,∴四棱锥的体积【点睛】(1)证明空间中的垂直关系时,要注意三种垂直关系间的转化,合理运用三种垂直关系进行求解,以达到求解的目的,同时在证题中要注意平面几何知识的运用(2)立体几何中的计算问题中往往涉及到证明,同时在证明中渗透着计算,计算时要注意中间量的求解,最后再结合面积、体积公式得到所求21、(1)当这个矩形菜园是边长为的正方形时,最短篱笆的长度为;(2)当这个矩形菜园是边长为的正方形时,最大面积是.【解析】设矩形菜园的相邻两条边的长分别为、,篱笆的长度为.(1)由题意得出,利用基本不等式可求出矩形周长的最小值,由等号成立的条件可得出矩形的边长,从而可得出结论;(2)由题意得出,利用基本不等式可求出矩形面积的最大值,由等号成立的条件可得出矩形的边长,从而可得出结论.【详解】设矩形菜园的相邻两条边的长分别为、,篱笆的长度为.(1)由已知得,由,可得,所以,当且仅当时,上式等号成立.因此,当这个矩形菜园是边长为的正方形时,所用篱笆最短,最短篱
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 员工敬业保密合同协议
- 正规授权工厂合同协议
- 正规农田出租合同协议
- 模块回收销售合同协议
- 品牌服装加盟合同协议
- 橡胶合同规格补充协议
- 和周边商铺合作合同协议
- 商品房二套房合同协议
- 员工劳务派遣协议书范本
- 商业单间出租合同协议
- 国际关系史智慧树知到期末考试答案2024年
- 防灾减灾安全知识培训
- 人教版 美术 三年级下册全册表格式教案教学设计
- 医院6s管理成果汇报护理课件
- 医疗保险异地就医登记备案表
- 大学生学风建设问卷调查表全
- DB15-T 3225-2023 焦炉煤气制LNG单位产品能源消耗限额
- 股骨颈骨折课件
- 酒店会议EO单范例
- MRI常见伪影和解决方法课件
- 玩转计算机网络-计算机网络原理智慧树知到课后章节答案2023年下青岛大学
评论
0/150
提交评论