福建省2024届高二数学第二学期期末教学质量检测试题含解析_第1页
福建省2024届高二数学第二学期期末教学质量检测试题含解析_第2页
福建省2024届高二数学第二学期期末教学质量检测试题含解析_第3页
福建省2024届高二数学第二学期期末教学质量检测试题含解析_第4页
福建省2024届高二数学第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省2024届高二数学第二学期期末教学质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,若有且仅有两个整数,使得,则的取值范围为()A. B. C. D.2.复数()A. B. C. D.3.下列导数运算正确的是()A. B.C. D.4.如图,在正方体中,E为线段的中点,则异面直线DE与所成角的大小为()A. B. C. D.5.复数(i为虚数单位)的共轭复数是A.1+i B.1−i C.−1+i D.−1−i6.在的展开式中,的系数为()A.-120 B.120 C.-15 D.157.已知为虚数单位,,则复数的虚部为()A. B.1 C. D.8.已知关于的实系数一元二次方程的一个根在复平面上对应点是,则这个方程可以是()A. B.C. D.9.已知函数.若g(x)存在2个零点,则a的取值范围是A.[–1,0) B.[0,+∞) C.[–1,+∞) D.[1,+∞)10.已知平面向量,的夹角为,且,,则()A. B. C. D.11.已知定义在R上的奇函数f(x)满足,f(-2)=-3,数列{an}是等差数列,若a2=3,a7=13,则f(a1)+f(a2)+f(a3)+…+f(a2018)=()A.-2 B.-3 C.2 D.312.甲乙丙三人代表班级参加校运会的跑步,跳远,铅球比赛,每人参加一项,每项都要有人参加,他们的身高各不同.现了解到以下情况:(1)甲不是最高的;(2)最高的没报铅球;(3)最矮的参加了跳远;(4)乙不是最矮的,也没参加跑步;可以判断丙参加的比赛项目是()A.跑步比赛 B.跳远比赛 C.铅球比赛 D.无法判断二、填空题:本题共4小题,每小题5分,共20分。13.设,,,则a,b,c的大小关系用“”连接为______.14.用分层抽样的方法从某校学生中抽取一个容量为45的样本,其中高一年级抽20人,高三年级抽10人,已知该校高二年级共有学生300人,则该校学生总数是_____人.15.某人进行射击训练,射击一次命中靶心的概率是0.9,各次射击相互独立,他连续射击3次,则“第一次没有命中靶心后两次命中靶心”的概率是______.16.4名学生被中大、华工、华师录取,若每所大学至少要录取1名,则共有不同的录取方法__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为了了解创建文明城市过程中学生对创建工作的满意情况,相关部门对某中学的100名学生进行调查.得到如下的统计表:满意不满意合计男生50女生15合计100已知在全部100名学生中随机抽取1人对创建工作满意的概率为.(1)在上表中相应的数据依次为;(2)是否有充足的证据说明学生对创建工作的满意情况与性别有关?18.(12分)已知椭圆C:x2a2+y2(1)求椭圆C的标准方程;(2)设M为椭圆C的右顶点,过点N(6,0)且斜率不为0的直线l与椭圆C相交于P,Q两点,记直线PM,QM的斜率分别为k1,k2,求证:19.(12分)设椭圆:的离心率与双曲线的离心率互为倒数,且椭圆的长轴长为1.(1)求椭圆的标准方程;(2)若直线交椭圆于,两点,()为椭圆上一点,求面积的最大值.20.(12分)如图,已知是圆锥的底面直径,是底面圆心,,,是母线的中点,是底面圆周上一点,.(1)求直线与底面所成的角的大小;(2)求异面直线与所成的角.21.(12分)某电视台举办闯关活动,甲、乙两人分别独立参加该活动,每次闯关,甲成功的概率为,乙成功的概率为.(1)甲参加了次闯关,求至少有次闯关成功的概率;(2)若甲、乙两人各进行次闯关,记两人闯关成功的总次数为,求的分布列及数学期望.22.(10分)若正数满足,求的最小值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】分析:数,若有且仅有两个整数,使得,等价于有两个整数解,构造函数,利用导数判断函数的极值点在,由零点存在定理,列不等式组,从而可得结果..详解:因为所以函数,若有且仅有两个整数,使得,等价于有两个整数解,设,令,令恒成立,单调递减,又,存在,使递增,递减,若解集中的整数恰为个,则是解集中的个整数,故只需,故选B.点睛:本题主要考查不等式有解问题以及方程根的个数问题,属于难题.不等式有解问题不能只局限于判别式是否为正,不但可以利用一元二次方程根的分布解题,还可以转化为有解(即可)或转化为有解(即可),另外,也可以结合零点存在定理,列不等式(组)求解.2、C【解题分析】分析:直接利用复数的除法运算得解.详解:由题得,故答案为:C.点睛:本题主要考查复数的运算,意在考查学生对该知识的掌握水平和基本运算能力.3、B【解题分析】

由判断;由判断;由判断判断;由判断.【题目详解】根据题意,依次分析选项,对于,,错误;对于,,正确;对于,,错误;对于,,错误;故选B.【题目点拨】本题主要考查指数函数、对数函数与幂函数的求导公式以及导数乘法的运算法则,意在考查对基本公式与基本运算掌握的熟练程度,属于中档题.4、B【解题分析】

建立空间直角坐标系,先求得向量的夹角的余弦值,即可得到异面直线所成角的余弦值,得到答案.【题目详解】分别以所在的直线为建立空间直角坐标系,设正方体的棱长为2,可得,所以,所以,所以异面直线和所成的角的余弦值为,所以异面直线和所成的角为,故选B.【题目点拨】本题主要考查了异面直线所成角的求解,其中解答中建立适当的空间直角坐标系,利用向量的夹角公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.5、B【解题分析】分析:化简已知复数z,由共轭复数的定义可得.详解:化简可得z=∴z的共轭复数为1﹣i.故选B.点睛:本题考查复数的代数形式的运算,涉及共轭复数,属基础题.6、C【解题分析】

写出展开式的通项公式,令,即,则可求系数.【题目详解】的展开式的通项公式为,令,即时,系数为.故选C【题目点拨】本题考查二项式展开的通项公式,属基础题.7、A【解题分析】

给两边同乘以,化简求出,然后可得到其虚部【题目详解】解:因为,所以所以,所以虚部为故选:A【题目点拨】此题考查复数的运算和复数的有关概念,属于基础题8、A【解题分析】

先由题意得到方程的两复数根为,(为虚数单位),求出,,根据选项,即可得出结果.【题目详解】因为方程的根在复平面内对应的点是,可设根为:,(为虚数单位),所以方程必有另一根,又,,根据选项可得,该方程为.故选A【题目点拨】本题主要考查复数的方程,熟记复数的运算法则即可,属于常考题型.9、C【解题分析】分析:首先根据g(x)存在2个零点,得到方程有两个解,将其转化为有两个解,即直线与曲线有两个交点,根据题中所给的函数解析式,画出函数的图像(将去掉),再画出直线,并将其上下移动,从图中可以发现,当时,满足与曲线有两个交点,从而求得结果.详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.10、C【解题分析】分析:根据向量的运算,化简,由向量的数量积定义即可求得模长.详解:平面向量数量积,所以所以选C点睛:本题考查了向量的数量积及其模长的求法,关键是理解向量运算的原理,是基础题.11、B【解题分析】

分析:利用函数的奇偶性和对称性推出周期,求出前三项的值,利用周期化简式子即可.详解:定义在R上的奇函数满足,故周期,数列是等差数列,若,,故,所以:,点睛:函数的周期性,对称性,奇偶性知二推一,已知奇函数,关于轴对称,则,令代入2式,得出,由奇偶性,故周期.12、A【解题分析】分析:由(1),(3),(4)可知,乙参加了铅球,由(2)可知乙不是最高的,所以三人中乙身高居中;再由(1)可知,甲是最矮的,参加了跳远,即可得出结论.详解:由(1),(3),(4)可知,乙参加了铅球,由(2)可知乙不是最高的,所以三人中乙身高居中;再由(1)可知,甲是最矮的,参加了跳远,所以丙最高,参加了跑步比赛.故选:A.点睛:本题考查合情推理,考查学生分析解决问题的能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

分别判断出,,,从而得到三者大小关系.【题目详解】,,则的大小关系用“”连接为本题正确结果:【题目点拨】本题考查指对数比较大小类的问题,解决此类问题的方法主要有两种:1.构造合适的函数模型,利用单调性判断;2.利用临界值进行区分.14、900【解题分析】

计算可得样本中高二年级人数,从而可计算得到抽样比,从而可求得学生总数.【题目详解】由题意可知,高二年级抽取:人抽样比为:该校学生总数为:人本题正确结果:【题目点拨】本题考查分层抽样的应用,关键是能够明确每层在样本中占比与该层在总体中的占比相同.15、0.081.【解题分析】分析:根据题意三次射击互相独立,故概率为:详解:射击一次命中靶心的概率是0.9,各次射击相互独立,第一次没有命中靶心后两次命中靶心的概率为:故答案为:0.081.点睛:这个题目考查了互相独立事件的概率的计算,当A,B事件互相独立时,.16、36种【解题分析】先从名学生中任意选个人作为一组,方法种;再把这一组和其它个人分配到所大学,方法有种,再根据分步计数原理可得不同的录取方法种,故答案为种.故答案为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)5,30,80,20,55,45;(2)有.【解题分析】分析:(1)根据列联表得关系确定数值,(2)根据公式求K2,再与参考数据比较得可靠性.详解:(1)填表如下:满意不满意合计男生50555女生301545合计80201005,30,80,20,55,45(2)根据列联表数据可得K2的观测值k=≈9.091>7.879,所以有在犯错误的概率不超过0.005的前提下认为学生对创建工作的满意情况与性别有关.点睛:本题考查卡方公式,考查基本求解能力.18、(1)x2【解题分析】

(1)由题意可得e=ca=222ab=4【题目详解】(1)由题意有e=ca=222ab=42(2)由(1)可知M(2,0),依题意得直线l的斜率存在,设其方程为y=k(x-6)(k≠0),设Px1,y1,Q消去y并整理可得(1+2kx1+x2=k2【题目点拨】本题考查了椭圆的标准方程,考查了直线与椭圆的位置关系,考查了直线的斜率及韦达定理的应用,考查了学生的计算能力,属于中档题.19、(1)(2)【解题分析】试题分析:(Ⅰ)利用椭圆的离心率与双曲线的离心率互为倒数,椭圆的长轴为及,求得的值,进而求得椭圆的方程;(Ⅱ)将直线与(Ⅰ)求得的椭圆方程联立,利用韦达定理和,利用弦长公式及点到直线的距离,求得的面积,同时,进而求得的面积的最大值.试题解析:(Ⅰ)双曲线的离心率为(1分),则椭圆的离心率为(2分),2a=1,(3分)由⇒,故椭圆M的方程为.(5分)(Ⅱ)由,得,(6分)由,得﹣2<m<2∵,.(7分)∴=又P到AB的距离为.(10分)则,(12分)当且仅当取等号(13分)∴.(11分)考点:1.椭圆的标准方程;2.韦达定理;3.弦长公式.20、(1);(2).【解题分析】

(1)作出直线与底面所成的角,解三角形求得线面角的大小.(2)作出直线与所成的角,解三角形求得异面直线所成角的大小.【题目详解】(1)因为是圆锥的底面直径,是底面圆心,,是母线的中点,是底面圆周上一点,.,圆锥母线长.过作,交于,连接,则是中点,.,所以,所以是直线和底面所成角.因为,所以.即与底面所成的角的大小为.(2)由(1)得,.连接,则,,所以是异面直线与所成的角,由余弦定理得.所以异面直线与所成的角为.【题目点拨】本小题主要考查线面角、线线角的求法,考查空间想象能力,属于中档题.21、(1);(2).【解题分析】

(1)这是一个独立重复试验,利用独立重复试验的公式即可计算甲参加了次闯关,求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论