版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年河西成功学校八年级数学第二学期期末调研试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.已知下列命题:①若a>0,b>0,则a+b>0;②若a2=b2,则a=b;③角的平分线上的点到角的两边的距离相等;④矩形的对角线相等.以上命题为真命题的个数是()A.1个 B.2个 C.3个 D.4个2.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为x,则x满足的方程是()A.(1+x)2= B.(1+x)2=C.1+2x= D.1+2x=3.若一组数据的方差是3,则的方差是()A.3 B.6 C.9 D.124.一家鞋店对上周某一品牌女鞋的销售量统计如下:尺码/厘米2222.52323.52424.525销售量/双12511731该鞋店决定本周多进一些尺码为23.5厘米的该品牌女鞋,影响鞋店决策的统计量是()A.方差 B.中位数 C.平均数 D.众数5.观察下列命题:(1)如果a<0,b>0,那么a+b<0;(2)如果两个三角形的3个角对应相等,那么这两个三角形全等;(3)同角的补角相等;(4)直角都相等.其中真命题的个数是().A.0 B.1 C.2 D.36.下列命题是真命题的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直的四边形是正方形7.已知△ABC的三边分别是a、b、c,下列条件中不能判断△ABC为直角三角形的是()A.a2+b2=c2 B.∠A+∠B=90°C.a=3,b=4,c=5 D.∠A:∠B:∠C=3:4:58.有19位同学参加歌咏比赛,所得的分数互不相同,所得分前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学得分的()A.平均数 B.中位数 C.众数 D.总分9.下列分式中,是最简分式的是()A. B. C. D.10.如图,O是边长为4cm的正方形ABCD的中心,M是BC的中点,动点P由A开始沿折线A﹣B﹣M方向匀速运动,到M时停止运动,速度为1cm/s.设P点的运动时间为t(s),点P的运动路径与OA、OP所围成的图形面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图象可以是().A. B.C. D.二、填空题(每小题3分,共24分)11.函数中,自变量x的取值范围是_____.12.如图所示,已知AB=6,点C,D在线段AB上,AC=DB=1,P是线段CD上的动点,分别以AP,PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G,当点P从点C运动到点D时,则点G移动路径的长是_________.13.在中,,,,则斜边上的高为________.14.矩形ABCD的面积为48,一条边AB的长为6,则矩形的对角线_______.15.如果一个n边形的内角和等于它的外角和的3倍,则n=______.16.我们把顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形,如果四边形的中点四边形是矩形,则对角线_____.17.计算:﹣=_____.18.如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则EC的长为________.三、解答题(共66分)19.(10分)在平面直角坐标系中,规定:抛物线y=a(x−h)+k的关联直线为y=a(x−h)+k.例如:抛物线y=2(x+1)−3的关联直线为y=2(x+1)−3,即y=2x−1.(1)如图,对于抛物线y=−(x−1)+3.①该抛物线的顶点坐标为___,关联直线为___,该抛物线与其关联直线的交点坐标为___和___;②点P是抛物线y=−(x−1)+3上一点,过点P的直线PQ垂直于x轴,交抛物线y=−(x−1)+3的关联直线于点Q.设点P的横坐标为m,线段PQ的长度为d(d>0),求当d随m的增大而减小时,d与m之间的函数关系式,并写出自变量m的取值范围。(2)顶点在第一象限的抛物线y=−a(x−1)+4a与其关联直线交于点A,B(点A在点B的左侧),与x轴负半轴交于点C,直线AB与x轴交于点D,连结AC、BC.①求△BCD的面积(用含a的代数式表示).②当△ABC为钝角三角形时,直接写出a的取值范围。20.(6分)已知一次函数y=(3-k)x-2k2+18.(1)当k为何值时,它的图象经过原点?(2)当k为何值时,它的图象经过点(0,-2)?(3)当k为何值时,它的图象平行于直线y=-x?(4)当k为何值时,y随x增大而减小?21.(6分)求证:三角形的中位线平行于三角形的第三边,并且等于第三边的一半.(要求:根据题意先画出图形,并写出已知、求证,再证明).22.(8分)分解因式:(1);(2)。23.(8分)如图,已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),(1)请画出把△ABO向下平移5个单位后得到的△A1B1O1的图形;(2)请画出将△ABO绕点O顺时针旋转90°后得到的△A2B2O2,并写出点A的对应点A2的坐标。24.(8分)已知在中,是的中点,,垂足为,交于点,且.(1)求的度数;(2)若,,求的长.25.(10分)小芳从家骑自行车去学校,所需时间()与骑车速度()之间的反比例函数关系如图.(1)小芳家与学校之间的距离是多少?(2)写出与的函数表达式;(3)若小芳点分从家出发,预计到校时间不超过点分,请你用函数的性质说明小芳的骑车速度至少为多少?26.(10分)计算(1)×(2)()0+-(-)-2
参考答案一、选择题(每小题3分,共30分)1、C【解析】
根据有理数的加法法则、乘方的意义、角平分线的性质定理、矩形的性质判断即可.【详解】若a>0,b>0,则a+b>0,①是真命题;
若a2=b2,则a=±b,②是假命题;
角的平分线上的点到角的两边的距离相等,③是真命题;
矩形的对角线相等,④是真命题;
故选:C.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.2、B【解析】
股票一次跌停就跌到原来价格的90%,再从90%的基础上涨到原来的价格,且涨幅只能≤10%,所以至少要经过两天的上涨才可以.设平均每天涨x,每天相对于前一天就上涨到1+x.【详解】解:假设股票的原价是1,平均增长率为.则90%(1+x)2=1,即(1+x)2=,故选B.【点睛】此题考查增长率的定义及由实际问题抽象出一元二次方程的知识,这道题的关键在于理解:价格上涨x后是原来价格的(1+x)倍.3、D【解析】
先根据的方差是3,求出数据的方差,进而得出答案.【详解】解:∵数据x1,x2,x3,x4,x5的方差是3,∴数据2x1,2x2,2x3,2x4,2x5的方差是4×3=12;∴数据的方差是12;故选:D.【点睛】本题考查了方差的定义.当数据都加上一个数时,平均数也加这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数时,平均数也乘以这个数,方差变为这个数的平方倍.4、D【解析】
平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】解:由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故选:D.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.5、C【解析】
根据不等式的运算、相似三角形的判定定理、补角的性质、直角的性质对各命题进行判断即可.【详解】(1)如果a<0,b>0,那么a+b的值不确定,错误;(2)如果两个三角形的3个角对应相等,那么这两个三角形相似,错误;(3)同角的补角相等,正确;(4)直角都相等,正确;故真命题的个数是2个故答案为:C.【点睛】本题考查了命题的问题,掌握不等式的运算、相似三角形的判定定理、补角的性质、直角的性质是解题的关键.6、A【解析】
逐一对选项进行分析即可.【详解】A.对角线互相平分的四边形是平行四边形,故该选项正确;B.对角线相等且平分的四边形是矩形,故该选项错误;C.对角线互相垂直平分的四边形是菱形,故该选项错误;D.对角线相等且互相垂直平分的四边形是正方形,故该选项错误.故选:A.【点睛】本题主要考查真假命题,掌握特殊四边形的判定方法是解题的关键.7、D【解析】分析:利用直角三角形的定义和勾股定理的逆定理逐项判断即可.详解:A.a2=b2+c2,符合勾股定理的逆定理,能够判定△ABC为直角三角形,不符合题意;B.∠A+∠B=∠C,此时∠C是直角,能够判定△ABC是直角三角形,不符合题意;C.52=32+42,符合勾股定理的逆定理,能够判定△ABC为直角三角形,不符合题意;D.∠A:∠B:∠C=3:4:5,那么∠A=45°、∠B=60°、∠C=75°,△ABC不是直角三角形;故选D.点睛:此题主要考查了直角三角形的判定方法,只有三角形的三边长构成勾股数或三个内角中有一个是直角的情况下,才能判定三角形是直角三角形.8、B【解析】
因为第10名同学的成绩排在中间位置,即是中位数.所以需知道这19位同学成绩的中位数.【详解】解:19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛,中位数就是第10位,因而要判断自己能否进入决赛,他只需知道这19位同学的中位数就可以,故选:B.【点睛】本题考查了统计量的选择,掌握各个统计量的特点是解题关键.9、C【解析】
根据最简分式的定义对四个分式分别进行判断即可.【详解】A、=,不是最简分式;B、=,不是最简分式;C、,是最简分式;D、=,不是最简分式;故选C.【点睛】本题考查了最简分式:一个分式的分子与分母没有公因式时,叫最简分式.10、A【解析】试题分析:分两种情况:①当0≤t<4时,作OG⊥AB于G,如图1所示,由正方形的性质得出∠B=90°,AD=AB=BC=4cm,AG=BG=OG=AB=2cm,由三角形的面积得出S=AP•OG=t();②当t≥4时,作OG⊥AB于G,如图2所示,S=△OAG的面积+梯形OGBP的面积=×2×2+(2+t﹣4)×2=t();综上所述:面积S()与时间t(s)的关系的图象是过原点的线段.故选A.考点:动点问题的函数图象.二、填空题(每小题3分,共24分)11、x≠1【解析】
根据分母不等于0,可以求出x的范围;【详解】解:(1)x-1≠0,解得:x≠1;故答案是:x≠1,【点睛】考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12、1【解析】
分别延长AE,BF交于点H,易证四边形EPFH为平行四边形,得出点G为PH的中点,则G的运动轨迹为△HCD的中位线MN,再求出CD的长度,运用中位线的性质求出MN的长度即可.【详解】解:如图,分别延长AE,BF交于点H,∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE∴四边形EPFH为平行四边形,∴EF与HP互相平分,∵点G为EF的中点,∴点G为PH的中点,即在P运动的过程中,G始终为PH的中点,∴G的运动轨迹为△HCD的中位线MN,∵CD=6-1-1=4,∴MN==1,∴点G移动路径的长是1,故答案为:1.【点睛】本题考查了等边三角形及中位线的性质,以及动点的问题,是中考热点,解题的关键是得出G的运动轨迹为△HCD的中位线MN.13、【解析】
利用面积法,分别以直角边为底和斜边为底,根据三角形面积相等,可以列出方程,解得答案【详解】解:设斜边上的高为h,在Rt△ABC中,利用勾股定理可得:根据三角形面积两种算法可列方程为:解得:h=2.4cm,故答案为2.4cm【点睛】本题考查勾股定理和利用面积法算垂线段的长度,要熟练掌握.14、10【解析】
先根据矩形面积公式求出AD的长,再根据勾股定理求出对角线BD即可.【详解】解:∵矩形ABCD的面积为48,一条边AB的长为6,∴AD=48÷6=8,∴对角线BD=,故答案为:10.【点睛】本题主要考查了勾股定理的应用,解决此题的关键是根据矩形面积求出另一边的长.15、1【解析】
根据多边形内角和公式110°(n-2)和外角和为360°可得方程110(n-2)=360×3,再解方程即可.【详解】解:由题意得:110(n-2)=360×3,解得:n=1,故答案为:1.【点睛】此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.16、⊥【解析】
作出图形,根据三角形的中位线定理可得GH∥AC,同理可得EF∥AC,HG∥EF,HE∥GF,可得中点四边形是平行四边形,要想保证中点四边形是矩形,需要对角线互相垂直.【详解】解:∵H、G,分别为AD、DC的中点,
∴HG∥AC,
同理EF∥AC,
∴HG∥EF;
同理可知HE∥GF.
∴四边形EFGH是平行四边形.
当AC⊥BD时,AC⊥EH.
∴GH⊥EH.
∴∠EHG=90°.
∴四边形EFGH是矩形.
故答案为:⊥.【点睛】本题考查了三角形的中位线定理,矩形的判定,熟练运用三角形的中位线定理是解题的关键.17、【解析】
根据二次根式的性质,进行计算即可解答【详解】解:﹣.故答案为:﹣.【点睛】此题考查二次根式的化简,解题关键在于掌握运算法则18、1【解析】
先根据角平分线及平行四边形的性质得出∠BAE=∠AEB,再由等角对等边得出BE=AB,从而求出EC的长.【详解】解:∵AE平分∠BAD交BC边于点E,
∴∠BAE=∠EAD,
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC=5,
∴∠DAE=∠AEB,
∴∠BAE=∠AEB,
∴AB=BE=3,
∴EC=BC-BE=5-3=1,
故答案为:1.【点睛】本题考查了角平分线、平行四边形的性质及等边对等角,根据已知得出∠BAE=∠AEB是解决问题的关键.三、解答题(共66分)19、(1)①(1,3),y=−x+4,(1,3)和(2,2);②当m<1,d=m−3m+2;⩽m<2时,d=−m+3m−2;;(2)①9a;②0<a<或a>1.【解析】
(1)①利用二次函数的性质和新定义得到抛物线的顶点坐标和关联直线解析式;然后解方程组得该抛物线与其关联直线的交点坐标;②设P(m,-m+2m+2),则Q(m,-m+4),如图1,利用d随m的增大而减小得到m<1或1<m<2,当m<1时,用m表示s得到d=m-3m+2;当1<m<2时,利用m表示d得到d=-m+3m-2,根据二次函数的性质得当m≥,d随m的增大而减小,所以≤m<2时,d=-m+3m-2;(2)①先确定抛物线y=-a(x-1)+4a的关联直线为y=-ax+5a,再解方程组得A(1,4a),B(2,3a),接着解方程-a(x-1)+4a=0得C(-1,0),解方程-ax+5a=0得D(5,0),然后利用三角形面积公式求解;②利用两点间的距离公式得到AC=2+16a,BC=3+9a,AB=1+a,讨论:当AC+AB<BC,∠BAC为钝角,即2+16a+1+a<3+9a;当BC+AB<AC,∠BAC为钝角,即3+9a+1+a<2+16a,然后分别解不等式即可得到a的范围.【详解】(1)①抛物线的顶点坐标为(1,3),关联直线为y=−(x−1)+3=−x+4,解方程组得或,所以该抛物线与其关联直线的交点坐标为(1,3)和(2,2);故答案为(1,3),y=−x+4,(1,3)和(2,2);②设P(m,−m+2m+2),则Q(m,−m+4),如图1,∵d随m的增大而减小,∴m<1或1<m<2,当m<1时,d=−m+4−(−m+2m+2)=m−3m+2;当1<m<2时,d=−m+2m+2−(m+4)=−m+3m−2,当m⩾,d随m的增大而减小,综上所述,当m<1,d=m−3m+2;⩽m<2时,d=−m+3m−2;(2)①抛物线y=−a(x−1)+4a的关联直线为y=−a(x−1)+4a=−ax+5a,解方程组得或,∴A(1,4a),B(2,3a),当y=0时,−a(x−1)+4a=0,解得x=3,x=−1,则C(−1,0),当y=0时,−ax+5a=0,解得x=5,则D(5,0),∴S△BCD=×6×3a=9a;②AC=2+16a,BC=3+9a,AB=1+a,当AC+AB<BC,∠BAC为钝角,即2+16a+1+a<3+9a,解得a<;当BC+AB<AC,∠BAC为钝角,即3+9a+1+a<2+16a,解得a>1,综上所述,a的取值范围为0<a<或a>1【点睛】此题考查二次函数综合题,解题关键在于利用勾股定理进行计算20、(1)见解析;(2)k=±;(1)k=4;(4)k>1.【解析】【分析】(1)将点(0,0)代入解析式y=(1-k)x-2k2+18;(2)将点(0,-2)代入解析式y=(1-k)x-2k2+18;(1)由图像平行于直线y=-x,得两个函数的一次项系数相等,即1-k=-1;(4)y随x的增大而减小,根据一次函数的性质可知,一次项系数小于0.【详解】解:(1)∵一次函数的图像经过原点,∴点(0,0)在一次函数的图像上,将点(0,0)代入解析式得:0=-2k2+18,解得:k=±1.又∵y=(1-k)x-2k2+18是一次函数,∴1-k≠0,∴k≠1.∴k=-1.(2)∵图像经过点(0,-2),∴点(0,-2)满足函数解析式,代入得:-2=-2k2+18,解得:k=±.(1)∵图像平行于直线y=-x,∴两个函数的一次项系数相等,即1-k=-1.解得k=4.(4)y随x的增大而减小,根据一次函数的性质可知,一次项系数小于0,即1-k<0,解得k>1.【点睛】本题考核知识点:一次函数性质.解题关键点:熟记一次函数性质.21、见解析【解析】
分别作出AB、AC的垂直平分线,得到点M,N,根据全等三角形的性质、平行四边形的判定和性质证明结论.【详解】如图,点M,N即为所求作的点,已知:如图,△ABC中,点M,N分别是AB,AC的中点,连接MN,求证:MN∥BC,MN=BC证明:延长MN至点D,使得MN=ND,连接CD,在△AMN和△CDN中,,∴△AMN≌△CDN(SAS)∴∠AMN=∠D,AM=CD,∴AM∥CD,即BM∥CD,∵AM=BM=CD,∴四边形BMDC为平行四边形,∴MN∥BC,MD=BC,∵MN=MD,∴MN=BC.【点睛】本题考查的是三角形中位线定理、平行四边形的判定定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.22、(1);(2).【解析】
(1)原式提取公因式,再利用平方差公式分解即可;
(2)原式提取公因式即可.【详解】解:(1)原式(2)原式【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法,正确运用公式是解本题的关键.23、(1)见解析(2)(3,-1)【解析】
(1)找到△ABO的三个顶点A、B、O、分别向下平移5个单位,找的它们的对应点A1、B1、O1,连接A1B1、B1O1、O1A1,即可得到题目所要求图形△A1B1O1.(2)将△ABO绕点O顺时针旋转90°,则旋转中心O点的对应点O2的坐标
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高中化学实验教学中实验操作的标准化研究课题报告教学研究课题报告
- 增强现实技术促进的小学英语跨文化教学实践课题报告教学研究课题报告
- 高中语文阅读教学中学生阅读策略的培养与运用研究教学研究课题报告
- 2025年临沂城市职业学院马克思主义基本原理概论期末考试模拟试卷
- 初中数学教师教学画像描绘及教学领导力培养路径研究教学研究课题报告
- 2024年海口经济学院马克思主义基本原理概论期末考试真题汇编
- 2025年西安交通大学城市学院马克思主义基本原理概论期末考试真题汇编
- 2024年合肥城市学院马克思主义基本原理概论期末考试笔试真题汇编
- 2025年郑州大学马克思主义基本原理概论期末考试笔试真题汇编
- 2025年广东梅州职业技术学院马克思主义基本原理概论期末考试笔试真题汇编
- 2026年安全员证考试试题及答案
- 2026年部编版新教材语文二年级上册期末无纸笔检测题(评价方案)
- 大学计算机教程-计算与人工智能导论(第4版)课件 第8章 计算机视觉
- 余姚市公务员 面试面试题及答案
- 2025年广东省第一次普通高中学业水平合格性考试(春季高考)英语试题(含答案详解)
- 智能工厂项目培训
- 《组织传播学》教材
- 中国马克思主义与当代2024版教材课后思考题答案
- 2026年日历表(每月一页、可编辑、可备注)
- GB 46520-2025建筑用绝热材料及制品燃烧性能安全技术规范
- 竖井通风管道施工技术方案
评论
0/150
提交评论