版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省鹤壁市淇县一中2023-2024学年高一数学第二学期期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的图像如图所示,则和分别是()A. B. C. D.2.函数的部分图象如图所示,为了得到的图象,只需将的图象A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位3.等差数列满足,则其前10项之和为()A.-9 B.-15 C.15 D.4.若()A. B. C. D.5.若,则下列不等式恒成立的是A. B. C. D.6.下列函数中,既是奇函数又是增函数的为()A. B. C. D.7.已知是锐角,那么2是()A.第一象限 B.第二象限C.小于的正角 D.第一象限或第二象限8.已知向量,,,且,则()A. B. C. D.9.如图,在坡度一定的山坡处测得山顶上一建筑物的顶端对于山坡的斜度为,向山顶前进100米到达后,又测得对于山坡的斜度为,若米,山坡对于地平面的坡角为,则()A. B. C. D.10.函数则=()A. B. C.2 D.0二、填空题:本大题共6小题,每小题5分,共30分。11.中,,则A的取值范围为______.12.某海域中有一个小岛(如图所示),其周围3.8海里内布满暗礁(3.8海里及以外无暗礁),一大型渔船从该海域的处出发由西向东直线航行,在处望见小岛位于北偏东75°,渔船继续航行8海里到达处,此时望见小岛位于北偏东60°,若渔船不改变航向继续前进,试问渔船有没有触礁的危险?答:______.(填写“有”、“无”、“无法判断”三者之一)13.已知直线:与圆交于,两点,过,分别作的垂线与轴交于,两点,若,则__________.14.若八个学生参加合唱比赛的得分为87,88,90,91,92,93,93,94,则这组数据的方差是______15.三棱锥P﹣ABC的底面ABC是等腰三角形,AC=BC=2,AB=2,侧面PAB是等边三角形且与底面ABC垂直,则该三棱锥的外接球表面积为_____.16.正方体中,异面直线和所成角的余弦值是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在长方体中,,点为的中点.(1)求证:直线平面;(2)求证:平面平面;(3)求直线与平面的夹角.18.求下列方程和不等式的解集(1)(2)19.已知等差数列的前n项和为,且,.(1)求;(2)设数列的前n项和为,求证:.20.如图,四棱锥,平面ABCD,四边形ABCD是直角梯形,,,,E为PB中点.(1)求证:平面PCD;(2)求证:.21.在△ABC中,a=3,b−c=2,cosB=.(Ⅰ)求b,c的值;(Ⅱ)求sin(B–C)的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
通过识别图像,先求,再求周期,将代入求即可【详解】由图可知:,,将代入得,又,,故故选C【点睛】本题考查通过三角函数识图求解解析式,属于基础题2、B【解析】试题分析:由图象知,,,,,得,所以,为了得到的图象,所以只需将的图象向右平移个长度单位即可,故选D.考点:三角函数图象.3、D【解析】由已知(a4+a7)2=9,所以a4+a7=±3,从而a1+a10=±3.所以S10=×10=±15.故选D.4、D【解析】故.【考点定位】本题主要考查基本不等式的应用及指数不等式的解法,属于简单题.5、D【解析】∵∴设代入可知均不正确对于,根据幂函数的性质即可判断正确故选D6、D【解析】
根据奇函数和增函数的定义逐项判断.【详解】选项A:不是奇函数,不正确;选项B::在是减函数,不正确;选项C:定义域上没有单调性,不正确;选项D:设,是奇函数,,在都是单调递增,且在处是连续的,在上单调递增,所以正确.故选:D.【点睛】本题考查函数的性质,对于常用函数的性质要熟练掌握,属于基础题.7、C【解析】是锐角,∴,∴是小于的正角8、C【解析】
由可得,代入求解可得,则,进而利用诱导公式求解即可【详解】由可得,即,所以,因为,所以,则,故选:C【点睛】本题考查垂直向量的应用,考查里利用诱导公式求三角函数值9、C【解析】
先在中利用正弦定理求出BC的值,再在中由正弦定理解出,再计算.【详解】在中,,在中,,又∵,∴.故选C.【点睛】本题考查解三角形在实际中的应用,属于基础题.10、B【解析】
先求得的值,进而求得的值.【详解】依题意,,故选B.【点睛】本小题主要考查分段函数求值,考查运算求解能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由正弦定理将sin2A≤sin2B+sin2C-sinBsinC变为,然后用余弦定理推论可求,进而根据余弦函数的图像性质可求得角A的取值范围.【详解】因为sin2A≤sin2B+sin2C-sinBsinC,所以,即.所以,因为,所以.【点睛】在三角形中,已知边和角或边、角关系,求角或边时,注意正弦、余弦定理的运用.条件只有角的正弦时,可用正弦定理的推论,将角化为边.12、无【解析】
可过作的延长线的垂线,垂足为,结合角度关系可判断为等腰三角形,再通过的边角关系即可求解,判断与3.8的大小关系即可【详解】如图,过作的延长线的垂线,垂足为,在中,,,则,所以为等腰三角形。,又,所以,,所以渔船没有触礁的危险故答案为:无【点睛】本题考查三角函数在生活中的实际应用,属于基础题13、4【解析】
由题,根据垂径定理求得圆心到直线的距离,可得m的值,既而求得CD的长可得答案.【详解】因为,且圆的半径为,所以圆心到直线的距离为,则由,解得,代入直线的方程,得,所以直线的倾斜角为,由平面几何知识知在梯形中,.故答案为4【点睛】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.14、1.1【解析】
先求出这组数据的平均数,由此能求出这组数据的方差.【详解】八个学生参加合唱比赛的得分为87,88,90,91,92,93,93,94,则这组数据的平均数为:(87+88+90+91+92+93+93+94)=91,∴这组数据的方差为:S2[(87﹣91)2+(88﹣91)2+(90﹣91)2+(91﹣91)2+(92﹣91)2+(93﹣91)2+(93﹣91)2+(94﹣91)2]=1.1.故答案为1.1.【点睛】本题考查方差的求法,考查平均数、方差的性质等基础知识,考查了推理能力与计算能力,是基础题.15、【解析】
求出的外接圆半径,的外接圆半径,求出外接球的半径,即可求出该三棱锥的外接球的表面积.【详解】由题意,设的外心为,的外心为,则的外接圆半径,在中,因为,由余弦定理可得,所以,所以的外接圆半径,在等边中,由,所以,所以,设球心为,球的半径为,则,又由面,面,则,所以该三棱锥的外接球的表面积为.故答案为:.【点睛】本题主要考查了三棱锥的外接球的表面积的求解,其中解答中熟练应用空间几何体的结构特征,确定球的半径是解答的关键,着重考查了空间想象能力,以及推理与运算能力,属于中档试题.16、【解析】
由,可得异面直线和所成的角,利用直角三角形的性质可得结果.【详解】因为,所以异面直线和所成角,设正方体的棱长为,则直角三角形中,,,故答案为.【点睛】本题主要考查异面直线所成的角,属于中档题题.求异面直线所成的角的角,先要利用三角形中位线定理以及平行四边形找到异面直线所成的角,然后利用直角三角形的性质及余弦定理求解,如果利用余弦定理求余弦,因为异面直线所成的角是直角或锐角,所以最后结果一定要取绝对值.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见证明;(2)见证明;(3)【解析】
(1)连接,交于,则为中点,连接OP,可证明,从而可证明直线平面;(2)先证明AC⊥BD,,可得到平面,然后结合平面,可知平面平面;(3)连接,由(2)知,平面平面,可知即为与平面的夹角,求解即可.【详解】(1)证明:连接,交于,则为中点,连接OP,∵P为的中点,∴,∵OP⊂平面,⊄平面,∴平面;(2)证明:长方体中,,底面是正方形,则AC⊥BD,又⊥面,则.∵⊂平面,⊂平面,,∴平面.∵平面,∴平面平面;(3)解:连接,由(2)知,平面平面,∴即为与平面的夹角,在长方体中,∵,∴.在中,.∴直线与平面的夹角为.【点睛】本题考查了线面平行、面面垂直的证明,考查了线面角的求法,考查了学生的空间想象能力和计算求解能力,属于中档题.18、(1)或;(2).【解析】
(1)先将方程变形得到,根据,得到,进而可求出结果;(2)由题意得到,求解即可得出结果.【详解】(1)由得,因为,所以,因此或;即原方程的解集为:或;(2)由得,即,解得:.故,原不等式的解集为:.【点睛】本题主要考查解含三角函数的方程,以及反三角函数不等式,熟记三角函数性质,根据函数单调性即可求解,属于常考题型.19、(1);(2)见解析【解析】
(1)设公差为,由,可得解得,,从而可得结果;(2)由(1),,则有,则,利用裂项相消法求解即可.【详解】(1)设公差为d,由题解得,.所以.(2)由(1),,则有.则.所以.【点睛】本题主要考查等差数列的通项与求和公式,以及裂项相消法求数列的和,属于中档题.裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.20、(1)证明见详解;(2)证明见详解【解析】
(1)取的中点,证出,再利用线面平行的判定定理即可证出.(2)利用线面垂直的判定定理可证出平面,再根据线面垂直的定义即可证出.【详解】如图,取的中点,连接,E为PB中点,,且,又,,,,为平行四边形,即,又平面PCD,平面PCD,所以平面PCD.(2)由平面ABCD,所以,又因为,,所以,,平面,又平面,.【点睛】本题考查了线面平行的判定定理、线面垂直的判
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年客房香氛用品采购合同协议
- 2026年外教合同年度评估
- 厨房劳务承包合同
- 物业公司法务部年终总结
- 培训讲师课件介绍
- 培训班安全工作日志课件
- 商户帮扶政策培训课件
- 项目采购与合同模板管理书稿第章项目采购与合同模板管理导论
- 反电信诈骗培训课件
- 合肥工业大学 现代变形监测技术第4章 变形监测数据处理基础
- 肉牛养殖投资计划书
- 中建办公商业楼有限空间作业专项施工方案
- 初三数学期末试卷分析及中考复习建议课件
- 四川省成都市青羊区2023年九年级一诊英语试卷
- 拆零药品登记表
- 附件1北京建筑大学新办本科专业教学评估方案
- 第12课 水陆交通的变迁 高二历史 课件(选择性必修2:经济与社会生活)
- 七年级上册语文期末考试卷及答案浙教版
- 22种常见环境违法行为笔录调查询问笔录及现场笔录模板(修改版)
- 解决问题的五原则-培训资料
- 老年大学规章制度管理办法汇编
评论
0/150
提交评论