版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵阳市第十八中学2024届高三3月份模拟考试数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,将两个全等等腰直角三角形拼成一个平行四边形,将平行四边形沿对角线折起,使平面平面,则直线与所成角余弦值为()A. B. C. D.2.已知复数,其中,,是虚数单位,则()A. B. C. D.3.若,则下列不等式不能成立的是()A. B. C. D.4.下列说法正确的是()A.“若,则”的否命题是“若,则”B.“若,则”的逆命题为真命题C.,使成立D.“若,则”是真命题5.直三棱柱中,,,则直线与所成的角的余弦值为()A. B. C. D.6.以下四个命题:①两个随机变量的线性相关性越强,相关系数的绝对值越接近1;②在回归分析中,可用相关指数的值判断拟合效果,越小,模型的拟合效果越好;③若数据的方差为1,则的方差为4;④已知一组具有线性相关关系的数据,其线性回归方程,则“满足线性回归方程”是“,”的充要条件;其中真命题的个数为()A.4 B.3 C.2 D.17.设直线过点,且与圆:相切于点,那么()A. B.3 C. D.18.棱长为2的正方体内有一个内切球,过正方体中两条异面直线,的中点作直线,则该直线被球面截在球内的线段的长为()A. B. C. D.19.已知函数满足,且,则不等式的解集为()A. B. C. D.10.函数满足对任意都有成立,且函数的图象关于点对称,,则的值为()A.0 B.2 C.4 D.111.若函数在处有极值,则在区间上的最大值为()A. B.2 C.1 D.312.在中,,,分别为角,,的对边,若的面为,且,则()A.1 B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.为激发学生团结协作,敢于拼搏,不言放弃的精神,某校高三5个班进行班级间的拔河比赛.每两班之间只比赛1场,目前(—)班已赛了4场,(二)班已赛了3场,(三)班已赛了2场,(四)班已赛了1场.则目前(五)班已经参加比赛的场次为__________.14.已知为椭圆内一定点,经过引一条弦,使此弦被点平分,则此弦所在的直线方程为________________.15.数列的前项和为,数列的前项和为,满足,,且.若任意,成立,则实数的取值范围为__________.16.若向量与向量垂直,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,点为圆:上一动点,过点分别作轴,轴的垂线,垂足分别为,,连接延长至点,使得,点的轨迹记为曲线.(1)求曲线的方程;(2)若点,分别位于轴与轴的正半轴上,直线与曲线相交于,两点,且,试问在曲线上是否存在点,使得四边形为平行四边形,若存在,求出直线方程;若不存在,说明理由.18.(12分)在四棱锥的底面是菱形,底面,,分别是的中点,.(Ⅰ)求证:;(Ⅱ)求直线与平面所成角的正弦值;(III)在边上是否存在点,使与所成角的余弦值为,若存在,确定点的位置;若不存在,说明理由.19.(12分)已知,函数.(Ⅰ)若在区间上单调递增,求的值;(Ⅱ)若恒成立,求的最大值.(参考数据:)20.(12分)已知动圆Q经过定点,且与定直线相切(其中a为常数,且).记动圆圆心Q的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线?(2)设点P的坐标为,过点P作曲线C的切线,切点为A,若过点P的直线m与曲线C交于M,N两点,则是否存在直线m,使得?若存在,求出直线m斜率的取值范围;若不存在,请说明理由.21.(12分)为了实现中华民族伟大复兴之梦,把我国建设成为富强民主文明和谐美丽的社会主义现代化强国,党和国家为劳动者开拓了宽广的创造性劳动的舞台.借此“东风”,某大型现代化农场在种植某种大棚有机无公害的蔬菜时,为创造更大价值,提高亩产量,积极开展技术创新活动.该农场采用了延长光照时间和降低夜间温度两种不同方案.为比较两种方案下产量的区别,该农场选取了40间大棚(每间一亩),分成两组,每组20间进行试点.第一组采用延长光照时间的方案,第二组采用降低夜间温度的方案.同时种植该蔬菜一季,得到各间大棚产量数据信息如下图:(1)如果你是该农场的负责人,在只考虑亩产量的情况下,请根据图中的数据信息,对于下一季大棚蔬菜的种植,说出你的决策方案并说明理由;(2)已知种植该蔬菜每年固定的成本为6千元/亩.若采用延长光照时间的方案,光照设备每年的成本为0.22千元/亩;若采用夜间降温的方案,降温设备的每年成本为0.2千元/亩.已知该农场共有大棚100间(每间1亩),农场种植的该蔬菜每年产出两次,且该蔬菜市场的收购均价为1千元/千斤.根据题中所给数据,用样本估计总体,请计算在两种不同的方案下,种植该蔬菜一年的平均利润;(3)农场根据以往该蔬菜的种植经验,认为一间大棚亩产量超过5.25千斤为增产明显.在进行夜间降温试点的20间大棚中随机抽取3间,记增产明显的大棚间数为,求的分布列及期望.22.(10分)已知在ΔABC中,角A,B,C的对边分别为a,b,c,且cosB(1)求b的值;(2)若cosB+3sin
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
利用建系,假设长度,表示向量与,利用向量的夹角公式,可得结果.【详解】由平面平面,平面平面,平面所以平面,又平面所以,又所以作轴//,建立空间直角坐标系如图设,所以则所以所以故选:C【点睛】本题考查异面直线所成成角的余弦值,一般采用这两种方法:(1)将两条异面直线作辅助线放到同一个平面,然后利用解三角形知识求解;(2)建系,利用空间向量,属基础题.2、D【解析】试题分析:由,得,则,故选D.考点:1、复数的运算;2、复数的模.3、B【解析】
根据不等式的性质对选项逐一判断即可.【详解】选项A:由于,即,,所以,所以,所以成立;选项B:由于,即,所以,所以,所以不成立;选项C:由于,所以,所以,所以成立;选项D:由于,所以,所以,所以,所以成立.故选:B.【点睛】本题考查不等关系和不等式,属于基础题.4、D【解析】选项A,否命题为“若,则”,故A不正确.选项B,逆命题为“若,则”,为假命题,故B不正确.选项C,由题意知对,都有,故C不正确.选项D,命题的逆否命题“若,则”为真命题,故“若,则”是真命题,所以D正确.选D.5、A【解析】
设,延长至,使得,连,可证,得到(或补角)为所求的角,分别求出,解即可.【详解】设,延长至,使得,连,在直三棱柱中,,,四边形为平行四边形,,(或补角)为直线与所成的角,在中,,在中,,在中,,在中,,在中,.
故选:A.【点睛】本题考查异面直线所成的角,要注意几何法求空间角的步骤“做”“证”“算”缺一不可,属于中档题.6、C【解析】
①根据线性相关性与r的关系进行判断,
②根据相关指数的值的性质进行判断,
③根据方差关系进行判断,
④根据点满足回归直线方程,但点不一定就是这一组数据的中心点,而回归直线必过样本中心点,可进行判断.【详解】①若两个随机变量的线性相关性越强,则相关系数r的绝对值越接近于1,故①正确;
②用相关指数的值判断模型的拟合效果,越大,模型的拟合效果越好,故②错误;
③若统计数据的方差为1,则的方差为,故③正确;
④因为点满足回归直线方程,但点不一定就是这一组数据的中心点,即,不一定成立,而回归直线必过样本中心点,所以当,时,点必满足线性回归方程;因此“满足线性回归方程”是“,”必要不充分条件.故④错误;
所以正确的命题有①③.
故选:C.【点睛】本题考查两个随机变量的相关性,拟合性检验,两个线性相关的变量间的方差的关系,以及两个变量的线性回归方程,注意理解每一个量的定义,属于基础题.7、B【解析】
过点的直线与圆:相切于点,可得.因此,即可得出.【详解】由圆:配方为,,半径.∵过点的直线与圆:相切于点,∴;∴;故选:B.【点睛】本小题主要考查向量数量积的计算,考查圆的方程,属于基础题.8、C【解析】
连结并延长PO,交对棱C1D1于R,则R为对棱的中点,取MN的中点H,则OH⊥MN,推导出OH∥RQ,且OH=RQ=,由此能求出该直线被球面截在球内的线段的长.【详解】如图,MN为该直线被球面截在球内的线段连结并延长PO,交对棱C1D1于R,则R为对棱的中点,取MN的中点H,则OH⊥MN,∴OH∥RQ,且OH=RQ=,∴MH===,∴MN=.故选:C.【点睛】本题主要考查该直线被球面截在球内的线段的长的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.9、B【解析】
构造函数,利用导数研究函数的单调性,即可得到结论.【详解】设,则函数的导数,,,即函数为减函数,,,则不等式等价为,则不等式的解集为,即的解为,,由得或,解得或,故不等式的解集为.故选:.【点睛】本题主要考查利用导数研究函数单调性,根据函数的单调性解不等式,考查学生分析问题解决问题的能力,是难题.10、C【解析】
根据函数的图象关于点对称可得为奇函数,结合可得是周期为4的周期函数,利用及可得所求的值.【详解】因为函数的图象关于点对称,所以的图象关于原点对称,所以为上的奇函数.由可得,故,故是周期为4的周期函数.因为,所以.因为,故,所以.故选:C.【点睛】本题考查函数的奇偶性和周期性,一般地,如果上的函数满足,那么是周期为的周期函数,本题属于中档题.11、B【解析】
根据极值点处的导数为零先求出的值,然后再按照求函数在连续的闭区间上最值的求法计算即可.【详解】解:由已知得,,,经检验满足题意.,.由得;由得或.所以函数在上递增,在上递减,在上递增.则,,由于,所以在区间上的最大值为2.故选:B.【点睛】本题考查了导数极值的性质以及利用导数求函数在连续的闭区间上的最值问题的基本思路,属于中档题.12、D【解析】
根据三角形的面积公式以及余弦定理进行化简求出的值,然后利用两角和差的正弦公式进行求解即可.【详解】解:由,得,∵,∴,即即,则,∵,∴,∴,即,则,故选D.【点睛】本题主要考查解三角形的应用,结合三角形的面积公式以及余弦定理求出的值以及利用两角和差的正弦公式进行计算是解决本题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】
根据比赛场次,分析,画出图象,计算结果.【详解】画图所示,可知目前(五)班已经赛了2场.故答案为:2【点睛】本题考查推理,计数原理的图形表示,意在考查数形结合分析问题的能力,属于基础题型.14、【解析】
设弦所在的直线与椭圆相交于、两点,利用点差法可求得直线的斜率,进而可求得直线的点斜式方程,化为一般式即可.【详解】设弦所在的直线与椭圆相交于、两点,由于点为弦的中点,则,得,由题意得,两式相减得,所以,直线的斜率为,所以,弦所在的直线方程为,即.故答案为:.【点睛】本题考查利用弦的中点求弦所在直线的方程,一般利用点差法,也可以利用韦达定理设而不求法来解答,考查计算能力,属于中等题.15、【解析】
当时,,可得到,再用累乘法求出,再求出,根据定义求出,再借助单调性求解.【详解】解:当时,,则,,当时,,,,,,(当且仅当时等号成立),,故答案为:.【点睛】本题主要考查已知求,累乘法,主要考查计算能力,属于中档题.16、0【解析】
直接根据向量垂直计算得到答案.【详解】向量与向量垂直,则,故.故答案为:.【点睛】本题考查了根据向量垂直求参数,意在考查学生的计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)不存在;详见解析【解析】
(1)设,,,通过,即为的中点,转化求解,点的轨迹的方程.(2)设直线的方程为,先根据,可得,①,再根据韦达定理,点在椭圆上可得,②,将①代入②可得,该方程无解,问题得以解决【详解】(1)设,,则,,由题意知,所以为中点,由中点坐标公式得,即,又点在圆:上,故满足,得.曲线的方程.(2)由题意知直线的斜率存在且不为零,设直线的方程为,因为,故,即①,联立,消去得:,设,,,,,因为四边形为平行四边形,故,点在椭圆上,故,整理得②,将①代入②,得,该方程无解,故这样的直线不存在.【点睛】本题考查点的轨迹方程的求法、满足条件的点是否存在的判断与直线方程的求法,考查数学转化思想方法,是中档题.18、(Ⅰ)见解析;(Ⅱ);(Ⅲ)见解析.【解析】
(Ⅰ)由题意结合几何关系可证得平面,据此证明题中的结论即可;(Ⅱ)建立空间直角坐标系,求得直线的方向向量与平面的一个法向量,然后求解线面角的正弦值即可;(Ⅲ)假设满足题意的点存在,设,由直线与的方向向量得到关于的方程,解方程即可确定点F的位置.【详解】(Ⅰ)由菱形的性质可得:,结合三角形中位线的性质可知:,故,底面,底面,故,且,故平面,平面,(Ⅱ)由题意结合菱形的性质易知,,,以点O为坐标原点,建立如图所示的空间直角坐标系,则:,设平面的一个法向量为,则:,据此可得平面的一个法向量为,而,设直线与平面所成角为,则.(Ⅲ)由题意可得:,假设满足题意的点存在,设,,据此可得:,即:,从而点F的坐标为,据此可得:,,结合题意有:,解得:.故点F为中点时满足题意.【点睛】本题主要考查线面垂直的判定定理与性质定理,线面角的向量求法,立体几何中的探索性问题等知识,意在考查学生的转化能力和计算求解能力.19、(Ⅰ);(Ⅱ)3.【解析】
(Ⅰ)先求导,得,已知导函数单调递增,又在区间上单调递增,故,令,求得,讨论得,而,故,进而得解;(Ⅱ)可通过必要性探路,当时,由知,又由于,则,当,,结合零点存在定理可判断必存在使得,得,,化简得,再由二次函数性质即可求证;【详解】(Ⅰ)的定义域为.易知单调递增,由题意有.令,则.令得.所以当时,单调递增;当时,单调递减.所以,而又有,因此,所以.(Ⅱ)由知,又由于,则.下面证明符合条件.若.所以.易知单调递增,而,,因此必存在使得,即.且当时,单调递减;当时,,单调递增;则.综上,的最大值为3.【点睛】本题考查导数的计算,利用导数研究函数的增减性和最值,属于中档题20、(1),抛物线;(2)存在,.【解析】
(1)设,易得,化简即得;(2)利用导数几何意义可得,要使,只需.联立直线m与抛物线方程,利用根与系数的关系即可解决.【详解】(1)设,由题意,得,化简得,所以动圆圆心Q的轨迹方程为,它是以F为焦点,以直线l为准线的抛物线.(2)不妨设.因为,所以,从而直线PA的斜率为,解得,即,又,所以轴.要使,只需.设直线m的方程为,代入并整理,得.首先,,解得或.其次,设,,则,..故存在直线m,使得,此时直线m的斜率的取值范围为.【点睛】本题考查直线与抛物线位置关系的应用,涉及抛物线中的存在性问题,考查学生的计算能力,是一道中档题.21、(1)见解析;(2)(i)该农场若采用延长光照时间的方法,预计每年的利润为426千元;(ii)若采用降低夜间温度的方法,预计每年的利润为424千元;(3)分布列见解析,.【解析】
(1)估计第一组数据平均数和第二组数据平均数来选择.(2)对于两种方法,先计算出每亩平均产量,再算农场一年的利润.(3)估计频率分布直方图可知,增产明显的大棚间数为5间,由题意可知,的可能取值有0,1,2,3,再算出相应的概
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年电工电气期末试题及完整答案一套
- 2026年教育心理学题库及答案1套
- 2026年心理测api考试题库及1套参考答案
- 2026年情感心理考试题库带答案
- 2026年湄洲湾职业技术学院单招职业技能测试题库附答案
- 2026年安徽工业职业技术学院单招职业倾向性测试模拟测试卷及答案1套
- 2026年心理现象考试题库附答案
- 2026浙江杭州市上城区发展和改革局编外招聘1人笔试备考题库及答案解析
- 2026陕西西安交通大学管理学院管理辅助工作人员招聘4人笔试模拟试题及答案解析
- 2025年齐齐哈尔富裕县信访局公开招聘公益性岗位人员1人备考题库附答案
- GB/T 44545-2024制冷系统试验
- 脾约免疫细胞在肠道菌群维持稳态中的作用
- DBJ 53∕T-23-2014 云南省建筑工程施工质量验收统一规程
- 物资、百货、五金采购 投标方案(技术方案)
- 2024年安防电子市场洞察报告
- 3D打印技术合同
- 期末专题复习:09-语法、对联课件 统编版语文七年级上册
- 棒垒球课教案(完美版)
- 注塑拌料作业指引 配料作业指导书全套
- Jira工具操作手册
- DL/T 5097-2014 火力发电厂贮灰场岩土工程勘测技术规程
评论
0/150
提交评论