版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(在此卷上答题无效)20244月份质量检测数学试题(完卷时间120满分分)友情提示:请将所有答案填写到答题卡上!请不要错位、越界答题!一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.ì1ü1.已知集合M=x„0,则ðM=ýRíx+1îþxx<-}xx„-}xx>-}D.xx-}aab2.设a,bÎR,则“ab<0”是“0”的b.充分不必要条件.充要条件.必要不充分条件D.既不充分也不必要条件3.等轴双曲线经过点-,则其焦点到渐近线的距离为.22.2.4D.2π144.若a+)=a,则sin2=4158787.-..-.iD.88zz5.已知非零复数z满足z-1=z-i,则=.1.-1的展开式中x的系数为.-6D.-i6.-x)5+2x)42.-.34D.747.数列an}共有5项前三等差且公差为d后项成等比且公比为q.若第2项于2第14的和于10第35项和等于30d-q=.1.2.3D.48.四棱锥E-的顶点均在球O的球面上,底面为矩形,平面^平面,BC=5,CD==1,BE=2,则O到平面的距离为131425...D.48二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.在一次射击比赛甲、乙两名选手射击环如下表,则下说法正确的是甲乙87909691869086928795.甲选手射击环极差大于乙选手射击环数的.甲选手射击环数的数等于乙选手射击环平均数.甲选手射击环数的方差大于乙选手射击环数的D.甲选手射击环第75百分位数大于乙选手射击环数的第75百分位数πè3öπè3öπ10.已知函数f(x)=sin(2x+j)满足f+x=f-x,且f()>f(π),则ç÷ç÷øø2112.sinj=.sinj=-213.y=f(x)的图象关于点12π,0)对称πD.f(x)在区间(,π)单调递减211.已知函数f(x)=ax(e.x+x+x=0x+e-x)-e+e-x恰有三个x,x,x,且x<x<x,则x123123.实数a的取值范围为D.3+a>1123.1+1>0三、填空题:本大题共3小题,每小题5分,共15分.12.若向量a=-4)在向量b=(-上的投影向lb,则l等于__________.π13.倾斜角为的直线经过抛物线C:y2=12x的焦点C交于AB点,Q为线段3AB的中点,P为C上一点,则PF+的最小值为__________.D114.如图,ABCDACD的一个面是边长为2的111C1形,,,均垂直于平面且=1CC=2,11111A1则该六面体的体积于__________,表面积等_________.DCAB四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知数列a}满足a=2,a=a+2n(n2).n1nn-1(1)求数列n}的通项公式;1(2)记数列{}的前n项和为S,证明:S<1.annn16.(15分)甲企业生产线上的零件的误差X服从正分布XÎ(-0.6,0.6)N(0,0.2)规定XÎ(-0.2,0.2)2的零件为等品,(1)从该生产线上随机抽取100个零件,估计抽到合格品但非优等品的个数(精确到整数的零件为合格品.()乙企业拟向甲企业购买这批零件,先对该批进行质量抽检,检测的案是:从这批零件中任取2个作这2个都是等品通这2零件中恰有1个为等品1为合格品但非优品零件中任取1作优等品,则通余情不通过检测.求通过检测时,检测了2个零件的概率(精确到0.01).x~N(m,s2)P(m-s<x<m+s)=0.6827(附:若随机变量,则,P(m-s<x<m+s)=0.9545P(m-s<x<m+s)=0.9973,)17.(15分)如图以正方形的边AB所在直线为余三AF»边旋转120°形成的面围成一个体-BCEP是CEDHE上的一点,G,H分别为线段AP,EF的中点.(1)证明:GH∥平面;GB(2BP^求平面与平面夹角的.CP18.(17分)点P是椭圆E:x22y22+=a>b>右端除外一个点,F(-,0)F,0)12ab分别是E左、右a2|2|d(1)设点P到直线l:x=的距离为d,证明为定值并求个定值;c(2)△F的重心与内心内切圆圆心别为,I,已知直线IGx12(ⅰ)求E心率;(ⅱ椭圆E的长轴为求△F被直线分部分的图形面积之的取12值范围.19.(17分)记集合Lf(x),xÎD=l(x)=+b(xÎR)|"xÎD,f(x)„l(x$xÎD,f(x)=l(x},集合000Tf(x),ÎD=l(x)=+b(xÎR)|"xÎD,f(x)l(x),且$xÎD,f(x)=l(x}.若l(x)ÎL,f(x),ÎD000则称直线y=l(x)为函数f(x)在D上的“最l(x)ÎTf(x),xÎD称直线y=l(x)为函数f(x)在D上的“最下界线”.(1)已知数f(x)=-x2+x,l(x)=+1.若l(x)ÎL,求k的值;f(x),xÎR00(2)已知g(x)=e+1.x(ⅰ直线y=l(x)是曲线y=g(x)的一条切线的充要条件是线y=l(x)是函数g(x)在R上的“佳下界线”;(ⅱh(x)=ln(x-直接写集合h(x),Î(1,+¥)Ig(x),ÎR中元素的个无需.20244月份质量检测参考答案与评分细则一、选择题:本大题考查基础知识和基本运算.每小题5分,满分40分.1.D2.C3.A4.C5.D.B7.B8.A二、选择题:本大题考查基础知识和基本运算.每小题6分,满分18分.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.10..三、填空题:本大题考查基础知识和基本运算.每小题5分,满分15分.12.-213.8146,22四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.逻辑推理等核心素养;基础性综合性.13分.解:(1n=n-1+2n,n2,所以n-n-1=2n,···································1分当n2时,a=(a-an-1)+(an-1-an-2)+L+(a-a)+a,nn211所以n=2n+2n-2+L+4+2,·························································3分n(2+2n)所以n=,n2,所以n=n+n,n2,··································4分22又因为1=2,···············································································5分所以n=n+,nÎN.······································································6分(2)由()可知n=n+n=n(n+nÎN,·············································7分2*2*1111所以==-,····························································9分ann(n+)nn+11111所以Sn=++L++L++1´22´3(n-nn(n+1212131111=1-所以Sn=1-+--+-,·····································分n-1nnn+11,·········································································12分n+1又因为n1,所以Sn<1.·································································································13分参考答案第1页共9页16.【考查意图】本小题主要考查正态分布、全概率公式、条件概率等基础知识,考查数学建模能力、逻辑思维概率统计思想查数学建模据分核心素养基础性综性和应15分.解:(1题意得,m=s=,···························································1分所以零件为合格品概率为P(-<X<0.6)=P(m-s<X<m+s)=0.9973,···································································································2分零件为优品的P(-<X<0.2)=P(m-s<X<m+s)=0.6827,·····3分所以零件为合格品但非优等的概率为P=0.9973-0.6827=0.3146,···········5分所以从该生产线上随机抽取100个零件,估计抽到合格品但非优等品的个数为100´0.3146»31.·············································································6分(2)设从这批零件中任取2检测,2有2等品为事件A,恰有1个优等品1个为合等品为事件B从这批零件中任取1个是优等品为事件C,这批产品通过检测D,····························································8分则D=A+,且A与BC互斥,9分所以P(D)=P()+P(BC)10分=P()+P(B)PC|B)分=22´0.68272+21´0.6827´0.3146´0.6827=1.6292´0.68272,12分所以这批零件通过检测时,检测了2个零件的P(AD)P(A|D)=13分P(D)0.68272=1.6292´0.682721=1.6292»0.61.15分答:这批零件通过检测时,检测了2个零件的0.61.17.【考查意图】本小题主要考查直线与平面平行的判定定理、直线与平面垂直的判定与性质定理、与的夹角间向量、三概念等基础知识,考査直观想象能力、逻辑推理能力、运算求解能力等,考查数形结合、化归与转化等,考査直观想象、逻辑推理、数学运算等核心素养,基础性综性.满分15分.解法一()在ABEF中,连接并延长,交BE的延长于点K,连接.···································································································2分参考答案第2页共9页因为G,H分别为线段AP,EF中点,所以=,AFDH所以△≌KEH,所以AH=,·····························4分GBEKCGH∥.································5P所以分GHË面BCE,PKÌ面BCE又因为,所以GH面BCE.···········································································7分(2)依题意得,AB^面BCE,又因为BPÌ面BCE,所以AB^BP.∩又因为BP^AE,AB=A,AB,AEÌ面ABEF,所以BP^面ABEF,········································································8分又BEÌ面ABEF,所以BP^BE,·····················································9分所以BP,BE,BA两两垂直.zx,y,zA以B为原点,BP,BE,BA所在分别为间直角坐标系,如所示.轴建立空FDHEG································································10分不妨设=1,ByCP31则PD(,-,x22ræ31öBP=1,0,0),=ç,-,1÷·························································,分ç÷22èøìm=ïm=(,y,z)设平面BPD的法向量为,则ím=ìx=ïy=2x=z=1,即í31取,得x-y+z=ïî22所以平面BPD的一个法向量是m=(),·········································13分分n=(0).················································14又平面的一个法向为mn225qcosq=<m,n>===.设平面BPD与平面的夹角为,则mn5´15参考答案第3页共9页255所以平面与平面夹角的余弦值为.····································15分解法二:()证明:取的中点,连接QGQ,.·····1分AFD因为G,H分别为线段AP,EF的中点,HG1所以GQAB,GQ=AB,····························2分2BEQ又因为AB∥EF,=,CPGQ∥HE,=所以,·································3分······················································4GQEH所以四边形是平行边形,分分GH∥QE··············································································5所以又因为Ë,Ì,.············································································7,所以GH面分(2)同解.····················································································15分解法三:()证明:取AB的中点I,连接,.········1分AFD因为G,H分别为线段AP,EF的中点,所以GI∥BP,∥,IHGBE又因为GIË面BCE,Ì面BCE,所以GI∥面BCE.············································3分因为Ë面BCE,Ì面BCE,CP所以HIBCE.············································································5分GI∩=I,GIÌ面GIH,Ì面GIH又因为,所以面GIH面BCE,·····································································6分又因为GHÌ面GIH,所以GH面.············································································7分(2)同解.····················································································15分18.【考查意图】本小题主要考查圆、椭圆的标准方程及简单几何性质,直线与椭圆的位置关系査直观想象逻辑,考查数形结思想、化归与转化思想思想逻辑核心素养体现基础性综合性创新性.17分.解法一()依b2+c2=a.··························································1分2参考答案第4页共9页0a20b2设P(x,y),则+=1,-a<0<a,00220a2b22所以|PF=(x-c)2+02=(0-c)2+b2-)=-)02-0+b2+c,2202ac2c所以|2|=02-20+a2|0-a|,············································3分a2aca2ca2又a>c,所以a>0,>x,所以|PF=a-0,d=-002acacca-0|2|dc|2|dca所以==,即为定值,且这个定为.··················4分a2aa-0c0y0(2ⅰ题意,G(,),3303设直线与x轴交于点,因为IG⊥x,所以C(,0),·······················5分03032所以|FC|-|FC|=(+c)-(c-)=0,··········································6分123因为△F的内切圆与x轴切于点,122所以|PF|-||FC|-|FC=0,·················································7分12123又因为|PF|+|PF=2a,1203y解得|2=a-,··········································8分Pc由(1)得|2=a-0,aGIc03xOC所以a-0=a-,ac13所以椭圆E的离心率e==.·························10分ac1(ⅱ2a=6a=3又=所以c=1b2=a2-c2=8,a3x2y2所以椭圆E的方程为+=1.······················································分98根据椭圆称性设点P在第限或y轴正上即0„x<30<y„22,00又F(-0),F0),1200+1所以直线1的方程为y=(x+,03y(x+000+设直线与交于点D,因为x=,所以yD=,1D△F的面积S与△F的面积S之比为11211023y(x+(+´001S3(0+(0+2==,················································13分(x+x-118(0+´2´02(x+2令f(x)=(0„x<3,则f(x)=,18(x+18(x+2参考答案第5页共9页当xÎ,f(x)<0,当xÎ,f(x)>0,所以函数f(x)在单调递,在单调递增.1412又因为f(0)=,f=,f=,2941所以f(x)的值域是[,],9241S1所以„„,··········································································15分9421所以„„1,·······································································16分5S-1根据对称,45△F被直线IG分成两部分的图形面积之比的值范围是[,].········17分1254解法二:()同解···········································································4分0y0(2ⅰ题意,G(,),3303设直线与x轴交于点,因为IG⊥x,所以C(,0),·······················5分03032所以|FC|-|FC|=(+c)-(c-)=0,··········································6分123因为△F的内切圆与x轴切于点,122所以|PF|-||FC|-|FC=0,·················································7分12123ìï030|PF1=a+,.ï又因为|PF|+|PF=2a,得···········································8分í12ï|2=a-ïî3ìï0303(0+c)22+022=a+,ï4所以两式平方后取,得40=ax对任意x成立,í003ï(0-c)+0=a-,ïîc13所以椭圆E的离心率e==.························································10分a(ⅱ)同法一···················································································17分解法三:()同解···········································································4分0y003(2ⅰ题意,G(可求直线PF1方程为y=,),因为IGx轴设点I坐标为(,t).··········5分3300+c(x+c),00(+c)-t(0+c)3则点I到直线PF1的距离|t|,·································6分y20+(0+c)+(0+c)=0,①22æ03ö(y0即y(+c)-t(0+c)=t222),化简得ç÷0èø030yt02+t(+c)(x+c)-y(+c)2003同理,由点I到直线2的距离等于|t|,可得参考答案第6页共9页0303yt02+t(-c)(x-c)-y(-c)2=0,②············································7分008404将式①式②,得t×=y×,则t=.·····································8分000330将t=代入式,得4y201x03+(0+c)(0+c)-(+c)2=0,1623x20y20化简得+=1,9c=a2c2得9c22,c13所以椭圆E的离心率e==.························································10分a(ⅱ)同法一···················································································17分19.【考查意图】本小题主要考查集合、导数、不等式等基础知识,考查逻辑推理能力、直观想象方程思想思想整合思想形结思想等,考查数学抽象、推理、直观想象、数学运算等核心素养,体现基础、综合与创新.满分17分.解:(1题意,0(x)ÎLf(x),xÎR所以"xÎR,-x+x„+1,且0R,-0令f(x)=-x+-k)x-1,D=(k-2-4,,22+x=+1,····················1分002则f(x)„0,且f(0)=0,ìD„所以í所以=0,···································································3分Dî即(k-2-4=0,解得k=3或-1.··············································································4分(2)先必要性.若直线y=l(x)是曲线y=g(x)的切线,设为x,e+1,(x0)0因为g(x)=e,所以切线方为y-ex0+)=ex0(x-0),x即l(x)=e0x+-0)e0+1().························································5分一方面,g(x)=l(x),所以$xÎR,g(x)=l(x),································6分00000参考答案
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小区设计方案理念
- 2025年中职烹调工艺与营养(西式烹饪)试题及答案
- 初中三年级语文(文言精读)2026年上学期期中测试卷
- 2025年本科土壤学(土壤检验技术)试题及答案
- 2025年大学给排水科学与工程(给排水工程设计)试题及答案
- 2025年大学第四学年(教育学)教育基础综合试题及答案
- 2025年大学语文(经典诵读)试题及答案
- 2025年大学护理(鼻饲工具框架)试题及答案
- 2025年高职(社区护理)家庭护理阶段测试题及答案
- 九年级生物(实验应用)2026年上学期期末测试卷
- 罗茨鼓风机行业发展趋势报告
- 慢性阻塞性肺疾病患者非肺部手术麻醉及围术期管理的专家共识
- 灯谜大全及答案1000个
- 中建办公商业楼有限空间作业专项施工方案
- 急性胰腺炎护理查房课件ppt
- 初三数学期末试卷分析及中考复习建议课件
- GB/T 4074.8-2009绕组线试验方法第8部分:测定漆包绕组线温度指数的试验方法快速法
- 第十章-孤独症及其遗传学研究课件
- 人教版四年级上册语文期末试卷(完美版)
- 防空警报系统设计方案
- 酒店管理用水 酒店厨房定额用水及排水量计算表分析
评论
0/150
提交评论