版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届莆田市重点中学高一下数学期末质量跟踪监视试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图是一个正方体的表面展开图,若图中“努”在正方体的后面,那么这个正方体的前面是()A.定 B.有 C.收 D.获2.如图,在中,,,若,则()A. B. C. D.3.给出下列四个命题:①垂直于同一条直线的两条直线互相平行;②平行于同一条直线的两条直线平行;③若直线满足,则;④若直线,是异面直线,则与,都相交的两条直线是异面直线.其中假命题的个数是()A.1 B.2 C.3 D.44.已知圆与直线切于点,则直线的方程为()A. B. C. D.5.已知直线的倾斜角为,在轴上的截距为2,则此直线方程为()A. B. C. D.6.不等式组所表示的平面区域的面积为()A.1 B. C. D.7.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为()A.75°B.60°C.45°D.30°8.在中,角A、B、C的对边分别为a、b、c,若,则角()A. B. C. D.9.在锐角中,内角,,所对的边分别为,,,若的面积为,且,则的周长的取值范围是A. B.C. D.10.若圆锥的高扩大为原来的3倍,底面半径缩短为原来的12A.缩小为原来的34 B.缩小为原来的C.扩大为原来的2倍 D.不变二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,若向量与垂直,则等于_______.12.若函数的反函数的图象过点,则________.13.已知角的终边经过点,若,则______.14.已知数列前项和,则该数列的通项公式______.15.已知圆及点,若满足:存在圆C上的两点P和Q,使得,则实数m的取值范围是________.16.函数的反函数为____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设集合,,求.18.在中,角的对边分别为,且.(1)求角的大小;(2)若,求的最大值.19.函数在一个周期内的图象如图所示,为图象的最高点,、为图象与轴的交点,且为正三角形.(1)求的值及函数的值域;(2)若,且,求的值.20.为了了解某市高中学生的汉字书写水平,在全市范围内随机抽取了近千名学生参加汉字听写考试,将所得数据进行分组,分组区间为:,并绘制出频率分布直方图,如图所示.(1)求频率分布直方图中的值,并估计该市高中学生的平均成绩;(2)设、、、四名学生的考试成绩在区间内,、两名学生的考试成绩在区间内,现从这6名学生中任选两人参加座谈会,求学生、至少有一人被选中的概率.21.设甲、乙、丙三个乒乓球协会分别选派3,1,2名运动员参加某次比赛,甲协会运动员编号分别为,,,乙协会编号为,丙协会编号分别为,,若从这6名运动员中随机抽取2名参加双打比赛.(1)用所给编号列出所有可能抽取的结果;(2)求丙协会至少有一名运动员参加双打比赛的概率;(3)求参加双打比赛的两名运动员来自同一协会的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
利用正方体及其表面展开图的特点以及题意解题,把“努”在正方体的后面,然后把平面展开图折成正方体,然后看“努”相对面.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“努”与面“有”相对,所以图中“努”在正方体的后面,则这个正方体的前面是“有”.故选:.【点睛】本题考查了正方形相对两个面上的文字问题,同时考查空间想象能力.注意正方体的空间图形,从相对面入手,分析及解答问题,属于基础题.2、B【解析】∵∴又,∴故选B.3、B【解析】
利用空间直线的位置关系逐一分析判断得解.【详解】①为假命题.可举反例,如a,b,c三条直线两两垂直;②平行于同一条直线的两条直线平行,是真命题;③若直线满足,则,是真命题;④是假命题,如图甲所示,c,d与异面直线,交于四个点,此时c,d异面,一定不会平行;当点B在直线上运动(其余三点不动),会出现点A与点B重合的情形,如图乙所示,此时c,d共面且相交.故答案为B【点睛】本题主要考查空间直线的位置关系,意在考查学生对该知识的理解掌握水平和分析推理能力.4、A【解析】
利用点与圆心连线的直线与所求直线垂直,求出斜率,即可求过点与圆C相切的直线方程;【详解】圆可化为:,显然过点的直线不与圆相切,则点与圆心连线的直线斜率为,则所求直线斜率为,代入点斜式可得,整理得。故选A.【点睛】本题考查直线方程,考查直线与圆的位置关系,考查分类讨论的数学思想,属于中档题.5、D【解析】
由题意可得直线的斜率和截距,由斜截式可得答案.【详解】解:∵直线的倾斜角为45°,∴直线的斜率为k=tan45°=1,由斜截式可得方程为:y=x+2,故选:D.【点睛】本题考查直线的斜截式方程,属基础题.6、D【解析】
画出可行域,根据边界点的坐标计算出平面区域的面积.【详解】画出可行域如下图所示,其中,故平面区域为三角形,且三角形面积为,故选D.【点睛】本小题主要考查线性规划可行域面积的求法,考查数形结合的数学思想方法,属于基础题.7、C【解析】如图:是底面中心,是侧棱与底面所成的角;在直角中,故选C8、C【解析】
利用余弦定理求三角形的一个内角的余弦值,可得的值,得到答案.【详解】在中,因为,即,利用余弦定理可得,又由,所以,故选C.【点睛】本题主要考查了余弦定理的应用,其中解答中根据题设条件,合理利用余弦定理求解是解答的关键,着重考查了推理与运算能力,属于基础题.9、C【解析】
首先根据面积公式和余弦定理可将已知变形为,,然后根据正弦定理,将转化为,利用,化简为,再根据三角形是锐角三角形,得到的范围,转化为三角函数求取值范围的问题.【详解】因为的面积为,所以,所以,由余弦定理可得,则,即,所以.由正弦定理可得,所以.因为为锐角三角形,所以,所以,则,即.故的周长的取值范围是.【点睛】本题考查了正余弦定理和三角形面积公式,以及辅助角公式和三角函数求取值范围的问题,属于中档题型,本题需认真审题,当是锐角三角形时,需满足三个角都是锐角,即.10、A【解析】
设原来的圆锥底面半径为r,高为h,可得出变化后的圆锥的底面半径为12r,高为【详解】设原来的圆锥底面半径为r,高为h,该圆锥的体积为V=1变化后的圆锥底面半径为12r,高为该圆锥的体积为V'=1故选:A.【点睛】本题考查圆锥体积的计算,考查变化后的圆锥体积的变化,解题关键就是圆锥体积公式的应用,考查计算能力,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】
根据向量的数量积的运算公式,列出方程,即可求解.【详解】由题意,向量,因为向量与垂直,所以,解得.故答案为:2.【点睛】本题主要考查了向量的坐标运算,以及向量的垂直关系的应用,着重考查了推理与运算能力,属于基础题.12、【解析】
由反函数的性质可得的图象过,将代入,即可得结果.【详解】的反函数的图象过点,的图象过,故答案为.【点睛】本题主要考查反函数的基本性质,意在考查对基础知识掌握的熟练程度,属于基础题.13、【解析】
利用三角函数的定义可求.【详解】由三角函数的定义可得,故.故答案为:.【点睛】本题考查三角函数的定义,注意根据正弦的定义构建关于的方程,本题属于基础题.14、【解析】
由,n≥2时,两式相减,可得{an}的通项公式;【详解】∵Sn=2n2(n∈N*),∴n=1时,a1=S1=2;n≥2时,an=Sn﹣=4n﹣2,a1=2也满足上式,∴an=4n﹣2故答案为【点睛】本题考查数列的递推式,考查数列的通项,属于基础题.15、【解析】
设出点P、Q的坐标,利用平面向量的坐标运算以及两圆相交的条件求出实数m的取值范围.【详解】设点,由得,由点在圆上,得,又在圆上,,与有交点,则,解得故实数m的取值范围为.故答案为:【点睛】本题考查了向量的坐标运算、利用圆与圆的位置关系求参数的取值范围,属于中档题.16、【解析】
由原函数的解析式解出自变量x的解析式,再把x和y交换位置,即可得到结果.【详解】解:记∴故反函数为:【点睛】本题考查函数与反函数的定义,求反函数的方法和步骤,注意反函数的定义域是原函数的值域.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】
首先求出集合,,再根据集合的运算求出即可.【详解】因为的解为(舍去),所以,又因为的解为,所以,所以.【点睛】本题考查了集合的运算,对数与指数的运算,属于基础题.18、(1).(2)【解析】
(1)先利用正弦定理角化边,然后根据余弦定理求角;(2)利用余弦定理以及基本不等式求解最值,注意取等号的条件.【详解】解:(1)由正弦定理得,由余弦定理得,∴.又∵,∴.(2)由余弦定理得,即,化简得,,即,当且仅当时,取等号.∴.【点睛】在三角形中,已知一角及其对边,求解周长或者面积的最值的方法:未给定三角形形状时,直接利用余弦定理和基本不等式求解最值;给定三角形形状时,先求解角的范围,然后根据正弦定理进行转化求解.19、(2),函数的值域为;(2).【解析】
(1)将函数化简整理,根据正三角形的高为,可求出,进而可得其值域;(2)由得到,再由求出,进而可求出结果.【详解】(1)由已知可得,又正三角形的高为,则,所以函数的最小正周期,即,得,函数的值域为.(2)因为,由(1)得,即,由,得,即=,故.【点睛】本题主要考查三角函数的图象和性质,熟记正弦函数的性质即可求解,属于基础题型.20、(1);(2).【解析】
(1)由频率分布直方图能求出a.由此能估计该市高中学生的平均成绩;(2)现从这6名学生中任选两人参加座谈会,求出基本事件总数,再学生M、N至少有一人被选中包含的基本事件个数,由此能求出学生M、N至少有一人被选中的概率.【详解】(1)由频率分布直方图得:,∴估计该市高中学生的平均成绩为:.(2)设A、B、C、D四名学生的考试成绩在区间[80,90)内,M、N两名学生的考试成绩在区间[60,70)内,现从这6名学生中任选两人参加座谈会,基本事件总数,学生M、N至少有一人被选中包含的基本事件个数,∴学生M、N至少有一人被选中的概率.【点睛】本题考查了利用频率分布直方图求平均数,考查了古典概型计算公式,考查了数学运算能力.21、(1)15种;(2);(3)【解析】
(1)从这6名运动员中随机抽取2名参加双打比赛,利用列举法即可得到所有可能的结果.(2利用列举法得到“丙协会至少有一名运动员参加双打比赛”的基本事件的个数,利用古典概型,即可求解;(3)由两名运动员来自同一协会有,,,,共4种,利用古典概型,即可求解.【详解】(1)由题意,从这6名运动员中随机抽取2名参加双打比赛,所有可能的结果为,,,,,,,,,,,,,,,共15种.(2)因为丙协会至少有一名运动员
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖南省株洲市2026届高三上学期教学质量统一检测(一模)英语试卷(含答案无听力音频及听力原文)
- 广东省深圳市福田区2025-2026学年九年级上学期1月期末考试化学试卷(含答案)
- 2025-2026学年内蒙古呼和浩特市八年级(上)期末数学试卷(含答案)
- 四川省达州市渠县第二中学2025-2026学年八年级上学期1月月考数学试题(无答案)
- 化工企业班组级培训课件
- 11月债市回顾及12月展望:关注重磅会议把握1.85配置价值
- 飞机连接技术铆接
- 2026天津商业大学第一批招聘20人 (高层次人才岗位)笔试备考试题及答案解析
- 2026福建南平市建阳区紧缺急需学科教师专项招聘16人参考考试题库及答案解析
- 2026江苏省数据集团数字科技有限公司招聘笔试备考试题及答案解析
- 重生之我在古代当皇帝-高二上学期自律主题班会课件
- 膀胱切开取石术护理查房
- GB/T 45355-2025无压埋地排污、排水用聚乙烯(PE)管道系统
- 2024-2025学年人教版初中地理七年级下册课件 第7章 第1节 自然环境
- 物业移交表格样本模板
- 《新生儿机械通气》课件
- 《水处理用活性焦吸附再生工艺》
- DB 23T 1501-2013 水利堤(岸)坡防护工程格宾与雷诺护垫施工技术规范
- 《保险公司主持技巧》课件
- 江苏省扬州市2021届高三考前调研测试数学试卷
- (2024年)农作物病虫害绿色防控技术课件
评论
0/150
提交评论