黑龙江省孙吴县第一中学2025届高一数学第二学期期末学业质量监测试题含解析_第1页
黑龙江省孙吴县第一中学2025届高一数学第二学期期末学业质量监测试题含解析_第2页
黑龙江省孙吴县第一中学2025届高一数学第二学期期末学业质量监测试题含解析_第3页
黑龙江省孙吴县第一中学2025届高一数学第二学期期末学业质量监测试题含解析_第4页
黑龙江省孙吴县第一中学2025届高一数学第二学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省孙吴县第一中学2025届高一数学第二学期期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知角是第三象限的角,则角是()A.第一或第二象限的角 B.第二或第三象限的角C.第一或第三象限的角 D.第二或第四象限的角2.等比数列中,,,则公比()A.1 B.2 C.3 D.43.已知,为直线,,为平面,下列命题正确的是()A.若,,则B.若,,则与为异面直线C.若,,,则D.若,,,则4.若复数(是虚数单位)是纯虚数,则实数的值为()A. B. C. D.5.三角形的三条边长是连续的三个自然数,且最大角是最小角的2倍,则该三角形的最大边长为()A.4 B.5 C.6 D.76.执行如图所示的程序框图,若输入的a,b的值分别为1,1,则输出的是()A.29 B.17 C.12 D.57.已知数列,对于任意的正整数,,设表示数列的前项和.下列关于的结论,正确的是()A. B.C. D.以上结论都不对8.如图所示,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是()A. B. C. D.9.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为4,体积为16,则这个球的表面积是()A. B. C. D.10.在非直角中,“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要二、填空题:本大题共6小题,每小题5分,共30分。11.在等比数列中,,,则__________.12.已知腰长为的等腰直角△中,为斜边的中点,点为该平面内一动点,若,则的最小值________.13.若角的终边过点,则______.14.将十进制数30化为二进制数为________.15.由正整数组成的数列,分别为递增的等差数列、等比数列,,记,若存在正整数()满足,,则__________.16.角的终边经过点,则___________________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆心为的圆过点,且与直线相切于点。(1)求圆的方程;(2)已知点,且对于圆上任一点,线段上存在异于点的一点,使得(为常数),试判断使的面积等于4的点有几个,并说明理由。18.已知函数().(1)若不等式的解集为,求的取值范围;(2)当时,解不等式;(3)若不等式的解集为,若,求的取值范围.19.已知函数是指数函数.(1)求的表达式;(2)判断的奇偶性,并加以证明(3)解不等式:.20.已知函数.求:(1)函数的最大值、最小值及最小正周期;(2)函数的单调递增区间.21.如图,在四棱锥中,底面是正方形,侧面⊥底面,若分别为的中点.(Ⅰ)求证:平面;(Ⅱ)求证:平面⊥平面.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

可采取特殊化的思路求解,也可将各象限分成两等份,再从x轴正半轴起,逆时针依次将各区域标上一、二、三、四,则标有三的即为所求区域.【详解】(方法一)取,则,此时角为第二象限的角;取,则,此时角为第四象限的角.(方法二)如图,先将各象限分成两等份,再从x轴正半轴起,逆时针依次将各区域标上一、二、三、四,则标有三的区域即为角的终边所在的区域,故角为第二或第四象限的角.故选:D【点睛】本题主要考查了根据所在象限求所在象限的方法,属于中档题.2、B【解析】

将与用首项和公比表示出来,解方程组即可.【详解】因为,且,故:,且,解得:,即,故选:B.【点睛】本题考查求解等比数列的基本量,属基础题.3、D【解析】

利用空间中线线、线面、面面间的位置关系对选项逐一判断即可.【详解】由,为直线,,为平面,知:在A中,若,,则与相交、平行或异面,故A错误;在B中,若,,则与相交、平行或异面,故B错误;在C中,若,,,则与相交、平行或异面,故C错误;在D中,若,,,则由线面垂直、面面平行的性质定理得,故D正确.故选:D.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,属于基础题.4、C【解析】,且是纯虚数,,故选C.5、C【解析】

根据三角形满足的两个条件,设出三边长分别为,三个角分别为,利用正弦定理列出关系式,根据二倍角的正弦函数公式化简后,表示出,然后利用余弦定理得到,将表示出的代入,整理后得到关于的方程,求出方程的解得到的值,【详解】解:设三角形三边是连续的三个自然,三个角分别为,

由正弦定理可得:,

再由余弦定理可得:,

化简可得:,解得:或(舍去),

∴,故三角形的三边长分别为:,故选:C.【点睛】此题考查了正弦、余弦定理,以及二倍角的正弦函数公式,正弦、余弦定理很好的建立了三角形的边角关系,熟练掌握定理是解本题的关键,属于中档题.6、B【解析】

根据程序框图依次计算得到答案.【详解】结束,输出故答案选B【点睛】本题考查了程序框图的计算,属于常考题型.7、B【解析】

根据题意,结合等比数列的求和公式,先得到当时,,再由极限的运算法则,即可得出结果.【详解】因为数列,对于任意的正整数,,表示数列的前项和,所以,,,...…,所以当时,,因此.故选:B【点睛】本题主要考查数列的极限,熟记等比数列的求和公式,以及极限的运算法则即可,属于常考题型.8、A【解析】

根据题意,分析可得,由三角形面积公式计算可得△DEF和△ACF的面积,进而可得△ABC的面积,由几何概型公式计算可得答案.【详解】根据题意,为等边三角形,则,则,中,,其面积,中,,,其面积,则的面积,故在大等边三角形中随机取一点,则此点取自小等边三角形的概率,故选:A.【点睛】本题主要考查几何概型中的面积类型,基本方法是:分别求得构成事件A的区域面积和试验的全部结果所构成的区域面积,两者求比值,即为概率.9、C【解析】

根据正四棱柱的底面是正方形,高为4,体积为16,求得底面正方形的边长,再求出其对角线长,然后根据正四棱柱的体对角线是外接球的直径可得球的半径,再根据球的表面积公式可求得.【详解】依题意正四棱柱的体对角线是其外接球的直径,的中点是球心,如图:依题意设,则正四棱柱的体积为:,解得,所以外接球的直径,所以外接球的半径,则这个球的表面积是.故选C.【点睛】本题考查了球与正四棱柱的组合体,球的表面积公式,正四棱柱的体积公式,属中档题.10、C【解析】

由得出,利用切化弦的思想得出其等价条件,再利用充分必要性判断出两条件之间的关系.【详解】若,则,易知,,,,,,,,,.因此,“”是“”的充要条件,故选C.【点睛】本题考查充分必要性的判断,同时也考查了切化弦思想、两角和差的正弦公式的应用,在讨论三角函数值符号时,要充分考虑角的取值范围,考查分析问题和解决问题的能力,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、8【解析】

可先计算出公比,从而利用求得结果.【详解】因为,所以,所以,则.【点睛】本题主要考查等比数列基本量的相关计算,难度很小.12、【解析】

如图建立平面直角坐标系,∴,当sin时,得到最小值为,故选.13、-2【解析】

由正切函数定义计算.【详解】根据正切函数定义:.故答案为-2.【点睛】本题考查三角函数的定义,掌握三角函数定义是解题基础.14、【解析】

利用除取余法可将十进制数化为二进制数.【详解】利用除取余法得因此,,故答案为.【点睛】本题考查将十进制数转化为二进制数,将十进制数转化为进制数,常用除取余法来求解,考查计算能力,属于基础题.15、262【解析】

根据条件列出不等式进行分析,确定公比、、的范围后再综合判断.【详解】设等比数列公比为,等差数列公差为,因为,,所以;又因为,分别为递增的等差数列、等比数列,所以且;又时显然不成立,所以,则,即;因为,,所以;因为,所以;由可知:,则,;又,所以,则有根据可解得符合条件的解有:或;当时,,解得不符,当时,解得,符合条件;则.【点睛】本题考查等差等比数列以及数列中项的存在性问题,难度较难.根据存在性将变量的范围尽量缩小,通过不等式确定参变的取值范围,然后再去确定符合的解,一定要注意带回到原题中验证,看是否满足.16、【解析】

先求出到原点的距离,再利用正弦函数定义求解.【详解】因为,所以到原点距离,故.故答案为:.【点睛】设始边为的非负半轴,终边经过任意一点,则:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)使的面积等于4的点有2个【解析】

(1)利用条件设圆的标准方程,由圆过点求t,确定圆方程.(2)设,由确定阿波罗尼斯圆方程,与圆C为同一圆,可得,求出N点的坐标,建立ON方程,,再利用面积求点P到直线的距离,判断与ON平行且距离为的两条直线与圆C的位置关系可得结论.【详解】(1)依题意可设圆心坐标为,则半径为,圆的方程可写成,因为圆过点,∴,∴,则圆的方程为。(2)由题知,直线的方程为,设满足题意,设,则,所以,则,因为上式对任意恒成立,所以,且,解得或(舍去,与重合)。所以点,则,直线方程为,点到直线的距离,若存在点使的面积等于4,则,∴。①当点在直线的上方时,点到直线的距离的取值范围为,∵,∴当点在直线的上方时,使的面积等于4的点有2个;②当点在直线的下方时,点到直线的距离的取值范围为,∵,∴当点在直线的下方时,使的面积等于4的点有0个,综上可知,使的面积等于4的点有2个。【点睛】本题考查圆的方程,直线与圆的位置关系,圆的第二定义,考查运算能力,分析问题解决问题的能力,属于难题.18、(1);(2).;(3).【解析】试题分析:(1)对二项式系数进行讨论,可得求出解集即可;(2)分为,,分别解出3种情形对应的不等式即可;(3)将问题转化为对任意的,不等式恒成立,利用分离参数的思想得恒成立,求出其最大值即可.试题解析:(1)①当即时,,不合题意;②当即时,,即,∴,∴(2)即即①当即时,解集为②当即时,∵,∴解集为③当即时,∵,所以,所以∴解集为(3)不等式的解集为,,即对任意的,不等式恒成立,即恒成立,因为恒成立,所以恒成立,设则,,所以,因为,当且仅当时取等号,所以,当且仅当时取等号,所以当时,,所以点睛:本题主要考查了含有参数的一元二次不等式的解法,考查了分类讨论的思想以及转化与化归的能力,难度一般;对于含有参数的一元二次不等式常见的讨论形式有如下几种情形:1、对二次项系数进行讨论;2、对应方程的根进行讨论;3、对应根的大小进行讨论等;考查恒成立问题,正确分离参数是关键,也是常用的一种手段.通过分离参数可转化为或恒成立,即或即可,利用导数知识结合单调性求出或即得解.19、(1)(2)见证明;(3)【解析】

(1)根据指数函数定义得到,检验得到答案.(2),判断关系得到答案.(3)利用函数的单调性得到答案.【详解】解:(1)∵函数是指数函数,且,∴,可得或(舍去),∴;(2)由(1)得,∴,∴,∴是奇函数;(3)不等式:,以2为底单调递增,即,∴,解集为.【点睛】本题考查了函数的定义,函数的奇偶性,解不等式,意在考查学生的计算能力.20、(1)最大值,最小值为,最小正周期;(2)【解析】

(1)根据即可求出最值,利用即可求出最小正周期;(2)根据复合函数的单调性,令即可得解.【详解】(1),函数的最大值为,最小值为;函数的最小正周期为.(2)令,得:,故函数的增区间为.【点睛】本题考查了三角函数的性质以及单调区间的求解,属于基础题.21、(1)证明见解析;(2)证明见解析.【解析】

(Ⅰ)利用线面平行的判定定理,只需证明EF∥PA,即可;(Ⅱ)先证明

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论