




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古兴安盟地区两旗一县市级名校2023-2024学年中考数学五模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A. B. C. D.2.若等式x2+ax+19=(x﹣5)2﹣b成立,则a+b的值为()A.16 B.﹣16 C.4 D.﹣43.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC相似的是A. B. C. D.4.在Rt△ABC中,∠ACB=90°,AC=12,BC=9,D是AB的中点,G是△ABC的重心,如果以点D为圆心DG为半径的圆和以点C为圆心半径为r的圆相交,那么r的取值范围是()A.r<5 B.r>5 C.r<10 D.5<r<105.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E,F分别是AC,BC的中点,直线EF与⊙O交于G,H两点,若⊙O的半径为6,则GE+FH的最大值为()A.6 B.9 C.10 D.126.在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.对于一条直线,当它与一个圆的公共点都是整点时,我们把这条直线称为这个圆的“整点直线”.已知⊙O是以原点为圆心,半径为圆,则⊙O的“整点直线”共有()条A.7 B.8 C.9 D.107.如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C和D的坐标分别为()A.(2,2),(3,2) B.(2,4),(3,1)C.(2,2),(3,1) D.(3,1),(2,2)8.一元二次方程(x+2017)2=1的解为()A.﹣2016,﹣2018 B.﹣2016 C.﹣2018 D.﹣20179.已知一个正多边形的一个外角为36°,则这个正多边形的边数是()A.8B.9C.10D.1110.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为()A.8 B.10 C.13 D.1411.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A. B. C. D.12.对于不为零的两个实数a,b,如果规定:a★b=,那么函数y=2★x的图象大致是()A. B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若一次函数y=﹣x+b(b为常数)的图象经过点(1,2),则b的值为_____.14.分解因式:mx2﹣4m=_____.15.已知,,,是成比例的线段,其中,,,则_______.16.在由乙猜甲刚才想的数字游戏中,把乙猜的数字记为b且,a,b是0,1,2,3四个数中的其中某一个,若|a﹣b|≤1则称甲乙”心有灵犀”.现任意找两个人玩这个游戏,得出他们”心有灵犀”的概率为_____.17.如图,在△ABC中,AB=AC,AH⊥BC,垂足为点H,如果AH=BC,那么sin∠BAC的值是____.18.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”,如图,P为AB的黄金分割点(AP>PB),如果AB的长度为10cm,那么PB的长度为__________cm.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是.20.(6分)如图,平行四边形ABCD的对角线AC,BD相交于点O,EF过点O且与AB、CD分别交于点E、F.求证:OE=OF.21.(6分)一个不透明的口袋中装有2个红球、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.22.(8分)已知:如图,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠A=60°.求:(1)求∠CDB的度数;(2)当AD=2时,求对角线BD的长和梯形ABCD的面积.23.(8分)某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行活动.下面两幅统计图反映了学生报名参加夏令营的情况,请你根据图中的信息回答下列问题:该年级报名参加丙组的人数为;该年级报名参加本次活动的总人数,并补全频数分布直方图;根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名学生到丙组?24.(10分)庞亮和李强相约周六去登山,庞亮从北坡山脚C处出发,以24米/分钟的速度攀登,同时,李强从南坡山脚B处出发.如图,已知小山北坡的坡度,山坡长为240米,南坡的坡角是45°.问李强以什么速度攀登才能和庞亮同时到达山顶A?(将山路AB、AC看成线段,结果保留根号)25.(10分)咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了部分学生进行问卷调查,根据调查结果绘制了如下图所示的两幅不完整统计图,请你根据图中信息解答下列问题:=1\*GB2⑴补全条形统计图,“体育”对应扇形的圆心角是度;=2\*GB2⑵根据以上统计分析,估计该校名学生中喜爱“娱乐”的有人;=3\*GB2⑶在此次问卷调查中,甲、乙两班分别有人喜爱新闻节目,若从这人中随机抽取人去参加“新闻小记者”培训,请用列表法或者画树状图的方法求所抽取的人来自不同班级的概率26.(12分)如图,在平面直角坐标系xOy中,已知正比例函数与一次函数的图像交于点A,(1)求点A的坐标;(2)设x轴上一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交和的图像于点B、C,连接OC,若BC=OA,求△OBC的面积.27.(12分)某门市销售两种商品,甲种商品每件售价为300元,乙种商品每件售价为80元.该门市为促销制定了两种优惠方案:方案一:买一件甲种商品就赠送一件乙种商品;方案二:按购买金额打八折付款.某公司为奖励员工,购买了甲种商品20件,乙种商品x(x≥20)件.(1)分别直接写出优惠方案一购买费用y1(元)、优惠方案二购买费用y(2)若该公司共需要甲种商品20件,乙种商品40件.设按照方案一的优惠办法购买了m件甲种商品,其余按方案二的优惠办法购买.请你写出总费用w与m之间的关系式;利用w与m之间的关系式说明怎样购买最实惠.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解析】
根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看第一层是三个小正方形,第二层中间有一个小正方形,
故选:A.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.2、D【解析】分析:已知等式利用完全平方公式整理后,利用多项式相等的条件求出a与b的值,即可求出a+b的值.详解:已知等式整理得:x2+ax+19=(x-5)2-b=x2-10x+25-b,可得a=-10,b=6,则a+b=-10+6=-4,故选D.点睛:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.3、B【解析】
根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解.【详解】已知给出的三角形的各边AB、CB、AC分别为、2、、只有选项B的各边为1、、与它的各边对应成比例.故选B.【点晴】此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理.4、D【解析】延长CD交⊙D于点E,∵∠ACB=90°,AC=12,BC=9,∴AB==15,∵D是AB中点,∴CD=,∵G是△ABC的重心,∴CG==5,DG=2.5,∴CE=CD+DE=CD+DF=10,∵⊙C与⊙D相交,⊙C的半径为r,∴,故选D.【点睛】本题考查了三角形的重心的性质、直角三角形斜边中线等于斜边一半、两圆相交等,根据知求出CG的长是解题的关键.5、B【解析】
首先连接OA、OB,根据圆周角定理,求出∠AOB=2∠ACB=60°,进而判断出△AOB为等边三角形;然后根据⊙O的半径为6,可得AB=OA=OB=6,再根据三角形的中位线定理,求出EF的长度;最后判断出当弦GH是圆的直径时,它的值最大,进而求出GE+FH的最大值是多少即可.【详解】解:如图,连接OA、OB,,∵∠ACB=30°,∴∠AOB=2∠ACB=60°,∵OA=OB,∴△AOB为等边三角形,∵⊙O的半径为6,∴AB=OA=OB=6,∵点E,F分别是AC、BC的中点,∴EF=AB=3,要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,∵当弦GH是圆的直径时,它的最大值为:6×2=12,∴GE+FH的最大值为:12﹣3=1.故选:B.【点睛】本题结合动点考查了圆周角定理,三角形中位线定理,有一定难度.确定GH的位置是解题的关键.6、D【解析】试题分析:根据圆的半径可知:在圆上的整数点为(2,2)、(2,-2),(-2,-2),(-2,2)这四个点,经过任意两点的“整点直线”有6条,经过其中的任意一点且圆相切的“整点直线”有4条,则合计共有10条.7、C【解析】
直接利用位似图形的性质得出对应点坐标乘以得出即可.【详解】解:∵线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点的坐标为:(2,2),(3,1).故选C.【点睛】本题考查位似变换;坐标与图形性质,数形结合思想解题是本题的解题关键.8、A【解析】
利用直接开平方法解方程.【详解】(x+2017)2=1x+2017=±1,所以x1=-2018,x2=-1.故选A.【点睛】本题考查了解一元二次方程-直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.9、C【解析】试题分析:已知一个正多边形的一个外角为36°,则这个正多边形的边数是360÷36=10,故选C.考点:多边形的内角和外角.10、C【解析】
根据三角形的面积公式以及切线长定理即可求出答案.【详解】连接PE、PF、PG,AP,由题意可知:∠PEC=∠PFA=PGA=90°,∴S△PBC=BC•PE=×4×2=4,∴由切线长定理可知:S△PFC+S△PBG=S△PBC=4,∴S四边形AFPG=S△ABC+S△PFC+S△PBG+S△PBC=5+4+4=13,∴由切线长定理可知:S△APG=S四边形AFPG=,∴=×AG•PG,∴AG=,由切线长定理可知:CE=CF,BE=BG,∴△ABC的周长为AC+AB+CE+BE=AC+AB+CF+BG=AF+AG=2AG=13,故选C.【点睛】本题考查切线长定理,解题的关键是画出辅助线,熟练运用切线长定理,本题属于中等题型.11、C【解析】
连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=OD=2,∴∠ODC=30°,CD=∴∠COD=60°,∴阴影部分的面积=,故选:C.【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.12、C【解析】
先根据规定得出函数y=2★x的解析式,再利用一次函数与反比例函数的图象性质即可求解.【详解】由题意,可得当2<x,即x>2时,y=2+x,y是x的一次函数,图象是一条射线除去端点,故A、D错误;当2≥x,即x≤2时,y=﹣,y是x的反比例函数,图象是双曲线,分布在第二、四象限,其中在第四象限时,0<x≤2,故B错误.故选:C.【点睛】本题考查了新定义,函数的图象,一次函数与反比例函数的图象性质,根据新定义得出函数y=2★x的解析式是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、3【解析】
把点(1,2)代入解析式解答即可.【详解】解:把点(1,2)代入解析式y=-x+b,可得:2=-1+b,解得:b=3,故答案为3【点睛】本题考查的是一次函数的图象点的关系,关键是把点(1,2)代入解析式解答.14、m(x+2)(x﹣2)【解析】
提取公因式法和公式法相结合因式分解即可.【详解】原式故答案为【点睛】本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底.15、【解析】
如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.根据定义ad=cb,将a,b及c的值代入即可求得d.【详解】已知a,b,c,d是成比例线段,根据比例线段的定义得:ad=cb,代入a=3,b=2,c=6,解得:d=4,则d=4cm.故答案为:4【点睛】本题主要考查比例线段的定义.要注意考虑问题要全面.16、【解析】
利用P(A)=,进行计算概率.【详解】从0,1,2,3四个数中任取两个则|a﹣b|≤1的情况有0,0;1,1;2,2;3,3;0,1;1,0;1,2;2,1;2,3;3,2;共10种情况,甲乙出现的结果共有4×4=16,故出他们”心有灵犀”的概率为.故答案是:.【点睛】本题考查了概率的简单计算能力,是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式.17、【解析】
过点B作BD⊥AC于D,设AH=BC=2x,根据等腰三角形三线合一的性质可得BH=CH=BC=x,利用勾股定理列式表示出AC,再根据三角形的面积列方程求出BD,然后根据锐角的正弦=对边:斜边求解即可.【详解】如图,过点B作BD⊥AC于D,设AH=BC=2x,∵AB=AC,AH⊥BC,∴BH=CH=BC=x,根据勾股定理得,AC==x,S△ABC=BC•AH=AC•BD,即•2x•2x=•x•BD,解得BC=x,所以,sin∠BAC=.故答案为.18、(15﹣5)【解析】
先利用黄金分割的定义计算出AP,然后计算AB-AP即得到PB的长.【详解】∵P为AB的黄金分割点(AP>PB),∴AP=AB=×10=5﹣5,∴PB=AB﹣PA=10﹣(5﹣5)=(15﹣5)cm.故答案为(15﹣5).【点睛】本题考查了黄金分割:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=AB.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)画图见解析,(2,-2);(2)画图见解析,(1,0);【解析】
(1)将△ABC向下平移4个单位长度得到的△A1B1C1,如图所示,找出所求点坐标即可;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,如图所示,找出所求点坐标即可.【详解】(1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,-2);(2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0),故答案为(1)(2,-2);(2)(1,0)【点睛】此题考查了作图-位似变换与平移变换,熟练掌握位似变换与平移变换的性质是解本题的关键.20、见解析【解析】
由四边形ABCD是平行四边形,根据平行四边形对角线互相平分,即可得OA=OC,易证得△AEO≌△CFO,由全等三角形的对应边相等,可得OE=OF.【详解】证明:∵四边形ABCD是平行四边形,∴OA=OC,AB∥DC,∴∠EAO=∠FCO,在△AEO和△CFO中,∴△AEO≌△CFO(ASA),∴OE=OF.【点睛】本题考查了平行四边形的性质和全等三角形的判定,属于简单题,熟悉平行四边形的性质和全等三角形的判定方法是解题关键.21、【解析】分析:列表得出所有等可能的情况数,找出两次都摸到红球的情况数,即可求出所求的概率.详解:列表如下:红红白黑红﹣﹣﹣(红,红)(白,红)(黑,红)红(红,红)﹣﹣﹣(白,红)(黑,红)白(红,白)(红,白)﹣﹣﹣(黑,白)黑(红,黑)(红,黑)(白,黑)﹣﹣﹣所有等可能的情况有12种,其中两次都摸到红球有2种可能,则P(两次摸到红球)==.点睛:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22、:(1)30º;(2).【解析】分析:(1)由已知条件易得∠ABC=∠A=60°,结合BD平分∠ABC和CD∥AB即可求得∠CDB=30°;(2)过点D作DH⊥AB于点H,则∠AHD=30°,由(1)可知∠BDA=∠DBC=30°,结合∠A=60°可得∠ADB=90°,∠ADH=30°,DC=BC=AD=2,由此可得AB=2AD=4,AH=,这样即可由梯形的面积公式求出梯形ABCD的面积了.详解:(1)∵在梯形ABCD中,DC∥AB,AD=BC,∠A=60°,∴∠CBA=∠A=60º,∵BD平分∠ABC,∴∠CDB=∠ABD=∠CBA=30º,(2)在△ACD中,∵∠ADB=180º–∠A–∠ABD=90º.∴BD=ADA=2tan60º=2.过点D作DH⊥AB,垂足为H,∴AH=ADA=2sin60º=.∵∠CDB=∠CBD=∠CBD=30º,∴DC=BC=AD=2∵AB=2AD=4∴.点睛:本题是一道应用等腰梯形的性质求解的题,熟悉等腰梯形的性质和直角三角形中30°的角所对直角边是斜边的一半及等腰三角形的判定,是正确解答本题的关键.23、(1)21人;(2)10人,见解析(3)应从甲抽调1名学生到丙组【解析】(1)参加丙组的人数为21人;(2)21÷10%=10人,则乙组人数=10-21-11=10人,如图:(3)设需从甲组抽调x名同学到丙组,根据题意得:3(11-x)=21+x解得x=1.答:应从甲抽调1名学生到丙组(1)直接根据条形统计图获得数据;(2)根据丙组的21人占总体的10%,即可计算总体人数,然后计算乙组的人数,补全统计图;(3)设需从甲组抽调x名同学到丙组,根据丙组人数是甲组人数的3倍列方程求解24、李强以12米/分钟的速度攀登才能和庞亮同时到达山顶A【解析】过点A作AD⊥BC于点D,在Rt△ADC中,由得tanC=∴∠C=30°∴AD=AC=×240=120(米)在Rt△ABD中,∠B=45°∴AB=AD=120(米)120÷(240÷24)=120÷10=12(米/分钟)答:李强以12米/分钟的速度攀登才能和庞亮同时到达山顶A25、(1)72;(2)700;(3).【解析】试题分析:(1)根据动画类人数及其百分比求得总
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房地产企业代理记账与资金筹措合同范本
- 车辆抵押担保与汽车保险理赔服务合同
- 垃圾处理场地租赁合同安全操作与环保要求
- 活动票务销售与现场管理合同
- 建筑工程承包合同书(15篇)
- 墓区及穴墓位使用权转让合同书(16篇)
- 2025上海车展智能汽车洞察分析报告
- 金银岛阅读心得600字(4篇)
- 商品房买卖合同模板(16篇)2
- 计算机嵌入式开发技巧试题及答案
- 农村生活污水检测服务方案
- 住院患者转科交接登记本
- 幼儿园食谱播报
- 县医院麻醉计划书
- 高级宏观经济学讲义(南开大学-刘晓峰教授-罗默的教材)【完整版】
- 肺胀中医护理查房-课件
- 急诊临床思维-课件
- 立德修身诚信为本
- 小石狮【经典绘本】
- 艾里逊8000系列变速箱培训:《动力传递分析》
- 商务英语写作实践智慧树知到答案章节测试2023年中北大学
评论
0/150
提交评论