




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.的相反数是()A. B.2 C. D.2.已知如图1所示的四张牌,若将其中一张牌旋转180°后得到图1.则旋转的牌是()A. B. C. D.3.如图,在△ABC中,D,E分别是AB,BC边上的点,且DE∥AC,若,,则△ACD的面积为()A.64 B.72 C.80 D.964.若关于的方程有两个相等的根,则的值为()A.10 B.10或14 C.-10或14 D.10或-145.如图,在△ABC中,DE∥BC,=,DE=4cm,则BC的长为()A.8cm B.12cm C.11cm D.10cm6.在小孔成像问题中,如图所示,若为O到AB的距离是18cm,O到CD的距离是6cm,则像CD的长是物体AB长的()A. B. C.2倍 D.3倍7.如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C,与x轴交于A,B两点,其中点B的坐标为B(1,0),抛物线的对称轴交x轴于点D,CE∥AB,并与抛物线的对称轴交于点E.现有下列结论:①a>0;②b>0;③1a+2b+c<0;④AD+CE=1.其中所有正确结论的序号是()A.①② B.①③ C.②③ D.②④8.若关于的方程有两个相等的实数根,则的值是()A.-1 B.-3 C.3 D.69.如图,在中,,已知,把沿轴负方向向左平移到的位置,此时在同一双曲线上,则的值为()A. B. C. D.10.如图,热气球的探测器显示,从热气球A看一栋高楼顶部B的仰角为300,看这栋高楼底部C的俯角为600,热气球A与高楼的水平距离为120m,这栋高楼BC的高度为()A.40m B.80m C.120m D.160m二、填空题(每小题3分,共24分)11.如图,在Rt△ABC中,∠BCA=90º,∠BAC=30º,BC=4,将Rt△ABC绕A点顺时针旋转90º得到Rt△ADE,则BC扫过的阴影面积为___.12.如图,在边长为1的正方形网格中,.线段与线段存在一种变换关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,则这个旋转中心的坐标为__________.13.如图,已知AD∥BE∥CF,它们依次交直线、于点A、B、C和点D、E、F.如果,DF=15,那么线段DE的长是__.14.将量角器按如图所示的方式放置在三角形纸板上,使点在半圆上,点、的度数分别为、,则的大小为___________15.观察下列各数:,,,,,……按此规律写出的第个数是______,第个数是______.16.如图,AB是⊙O的直径,弦CD⊥AB于E,若AB=20,CD=16,则OE的长为______.17.如图,是的直径,,弦,的平分线交于点,连接,则阴影部分的面积是________.(结果保留)18.如图,是锐角的外接圆,是的切线,切点为,,连结交于,的平分线交于,连结.下列结论:①平分;②连接,点为的外心;③;④若点,分别是和上的动点,则的最小值是.其中一定正确的是__________(把你认为正确结论的序号都填上).三、解答题(共66分)19.(10分)如图,点、、都在半径为的上,过点作交的延长线于点,连接,已知.(1)求证:是的切线;(2)求图中阴影部分的面积.20.(6分)已知二次函数的图象和轴交于点、,与轴交于点,点是直线上方的抛物线上的动点.(1)求直线的解析式.(2)当是抛物线顶点时,求面积.(3)在点运动过程中,求面积的最大值.21.(6分)若直线与双曲线的交点为,求的值.22.(8分)如图,在中,,点在边上,经过点和点且与边相交于点.(1)求证:是的切线;(2)若,求的半径.23.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=1.5°,求阴影部分的面积.24.(8分)先化简,再求值:(1+)÷,其中a=1.25.(10分)阅读下面材料,完成(1)-(3)题.数学课上,老师出示了这样一道题:如图,△ABC中,D为BC中点,且AD=AC,M为AD中点,连结CM并延长交AB于N.探究线段AN、MN、CN之间的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现线段AN、AB之间存在某种数量关系.”小强:“通过倍长不同的中线,可以得到不同的结论,但都是正确的,大家就大胆的探究吧.”小伟:“通过构造、证明相似三角形、全等三角形,就可以将问题解决.”......老师:“若其他条件不变,设AB=a,则可以用含a的式子表示出线段CM的长.”(1)探究线段AN、AB之间的数量关系,并证明;(2)探究线段AN、MN、CN之间的数量关系,并证明;(3)设AB=a,求线段CM的长(用含a的式子表示).26.(10分)如图,转盘A的三个扇形面积相等,分别标有数字1,2,3,转盘B的四个扇形面积相等,分别有数字1,2,3,1.转动A、B转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相乘(当指针落在四个扇形的交线上时,重新转动转盘).(1)用树状图或列表法列出所有可能出现的结果;(2)求两个数字的积为奇数的概率.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键.2、A【解析】解:观察发现,只有是中心对称图形,∴旋转的牌是.故选A.3、C【分析】根据题意得出BE:CE=1:4,由DE∥AC得出△DBE和△ABC相似,根据相似三角形面积的比等于相似比的平方求出△ABC的面积,然后求出△ACD的面积.【详解】∵S△BDE=4,S△CDE=16,
∴S△BDE:S△CDE=1:4,
∵△BDE和△CDE的点D到BC的距离相等,∴,∴,∵DE∥AC,
∴△DBE∽△ABC,
∴S△DBE:S△ABC=1:25,∴S△ABC=100
∴S△ACD=S△ABC-S△BDE-S△CDE=100-4-16=1.
故选C.【点睛】考查了相似三角形的判定与性质,等高的三角形的面积的比等于底边的比,熟记相似三角形面积的比等于相似比的平方,用△BDE的面积表示出△ABC的面积是解题的关键.4、D【分析】根据题意利用根的判别式,进行分析计算即可得出答案.【详解】解:∵关于的方程有两个相等的根,∴,即有,解得10或-14.故选:D.【点睛】本题考查的是根的判别式,熟知一元二次方程中,当时,方程有两个相等的两个实数根是解答此题的关键.5、B【分析】由平行可得=,再由条件可求得=,代入可求得BC.【详解】解:∵DE∥BC,∴=,∵=,∴=,∴=,且DE=4cm,∴=,解得:BC=12cm,故选:B.【点睛】本题主要考查平行线分线段成比例的性质,掌握平行线分线段成比例中的对应线段成比例是解题的关键.6、A【分析】作OE⊥AB于E,OF⊥CD于F,根据题意得到△AOB∽△COD,根据相似三角形的对应高的比等于相似比计算即可.【详解】作OE⊥AB于E,OF⊥CD于F,由题意得,AB∥CD,∴△AOB∽△COD,∴==,∴像CD的长是物体AB长的.故答案选:A.【点睛】本题考查了相似三角形的应用,解题的关键是熟练的掌握相似三角形的应用.7、D【分析】①根据抛物线开口方向即可判断;②根据对称轴在y轴右侧即可判断b的取值范围;③根据抛物线与x轴的交点坐标与对称轴即可判断;④根据抛物线与x轴的交点坐标及对称轴可得AD=BD,再根据CE∥AB,即可得结论.【详解】①观察图象开口向下,a<0,所以①错误;②对称轴在y轴右侧,b>0,所以②正确;③因为抛物线与x轴的一个交点B的坐标为(1,0),对称轴在y轴右侧,所以当x=2时,y>0,即1a+2b+c>0,所以>③错误;④∵抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,∴AD=BD.∵CE∥AB,∴四边形ODEC为矩形,∴CE=OD,∴AD+CE=BD+OD=OB=1,所以④正确.综上:②④正确.故选:D.【点睛】本题考查了二次函数图象与系数的关系,解决本题的关键是综合运用二次函数图象上点的坐标特征、抛物线与x轴的交点进行计算.8、C【分析】根据方程有两个相等的实数根,判断出根的判别式为0,据此求解即可.【详解】∵关于的方程有两个相等的实数根,
∴,
解得:.故选:C.【点睛】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.9、C【分析】作CN⊥x轴于点N,根据证明,求得点C的坐标;设△ABC沿x轴的负方向平移c个单位,用c表示出和,根据两点都在反比例函数图象上,求出k的值,即可求出反比例函数的解析式.【详解】作CN⊥轴于点N,
∵A(2,0)、B(0,1).
∴AO=2,OB=1,∵,∴,
在和中,∴,∴,
又∵点C在第一象限,
∴C(3,2);设△ABC沿轴的负方向平移c个单位,
则,则,
又点和在该比例函数图象上,
把点和的坐标分别代入,得,
解得:,∴,
故选:C.【点睛】本题是反比例函数与几何的综合题,涉及的知识有:全等三角形的判定与性质,勾股定理,坐标与图形性质,利用待定系数法求函数解析式,平移的性质.10、D【分析】过A作AD⊥BC,垂足为D,在直角△ABD与直角△ACD中,根据三角函数的定义求得BD和CD,再根据BC=BD+CD即可求解.【详解】解:过A作AD⊥BC,垂足为D.在Rt△ABD中,∵∠BAD=30°,AD=120m,∴BD=AD•tan30°=120×m,在Rt△ACD中,∵∠CAD=60°,AD=120m,∴CD=AD•tan60°=120×=120m,∴BC=BD+CD=m.故选D.【点睛】本题考查解直角三角形的应用-仰角俯角问题.二、填空题(每小题3分,共24分)11、4π【分析】先利用含30度的直角三角形三边的关系得到AB=2BC=8,AC=BC=,再根据旋转的性质得到∠CAE=∠BAD=90°,然后根据扇形的面积公式,利用BC扫过的阴影面积=S扇形BAD-S△CAE进行计算.【详解】解:∵∠BCA=90°,∠BAC=30°,∴AB=2BC=8,AC=BC=4,∵Rt△ABC绕A点顺时针旋转90°得到Rt△ADE,∴∠CAE=∠BAD=90°,∴BC扫过的阴影面积=S扇形BAD-S△CAE=.故答案为:4π.【点睛】本题考查了扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S,则S扇形=或S扇形=(其中l为扇形的弧长);求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.也考查了旋转的性质.12、或【分析】根据旋转后的对应关系分类讨论,分别画出对应的图形,作出对应点连线的垂直平分线即可找到旋转中心,最后根据点A的坐标即可求结论.【详解】解:①若旋转后点A的对应点是点C,点B的对称点是点D,连接AC和BD,分别作AC和BD的垂直平分线,两个垂直平分线交于点O,根据垂直平分线的性质可得OA=OC,OB=OD,故点O即为所求,∵,∴由图可知:点O的坐标为(5,2);②若旋转后点A的对应点是点D,点B的对称点是点C,连接AD和BC,分别作AD和BC的垂直平分线,两个垂直平分线交于点O,根据垂直平分线的性质可得OA=OD,OB=OC,故点O即为所求,∵,∴由图可知:点O的坐标为综上:这个旋转中心的坐标为或故答案为:或.【点睛】此题考查的是根据旋转图形找旋转中心,掌握垂直平分线的性质及作法是解决此题的关键.13、6【分析】由平行得比例,求出的长即可.【详解】解:,,,,解得:,故答案为:6.【点睛】此题考查了平行线分线段成比例,熟练掌握平行线分线段成比例性质是解本题的关键.14、【分析】设半圆圆心为O,连OA,OB,则∠AOB=86°−30°=56°,根据圆周角定理得∠ACB=∠AOB,即可得到∠ACB的大小.【详解】设半圆圆心为O,连OA,OB,如图,∵∠ACB=∠AOB,而∠AOB=86°−30°=56°,∴∠ACB=×56°=28°.故答案为:28°.【点睛】本题考查了圆周角定理.在同圆或等圆中,同弧和等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.15、【分析】由题意可知已知数的每一项,都等于它的序列号的平方减,进而进行分析即可求解.【详解】解:给出的数:,,,,,……序列号:,,,,,……容易发现,已知数的每一项,都等于它的序列号的平方减.因此,第个数是,第个数是.故第个数是,第个数是.故答案为:,.【点睛】本题考查探索规律的问题,解决此类问题要从数字中间找出一般规律(符号或数),进一步去运用规律进行解答.16、6【分析】连接OC,易知,由垂径定理可得,根据勾股定理可求出OE长.【详解】解:连接OCAB是⊙O的直径,AB=20弦CD⊥AB于E,CD=16在中,根据勾股定理得,即解得故答案为:6【点睛】本题主要考查了垂径定理,熟练利用垂径定理是解题的关键.垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.17、【分析】连接OD,求得AB的长度,可以推知OA和OD的长度,然后由角平分线的性质求得∠AOD=90°;最后由扇形的面积公式、三角形的面积公式可以求得,阴影部分的面积=.【详解】解:连接,∵为的直径,∴,∵,∴,∴,∵平分,,∴,∴,∴,∴,∴阴影部分的面积.故答案为:.【点睛】本题综合考查了圆周角定理、含30度角的直角三角形以及扇形面积公式.18、【分析】如图1,连接,通过切线的性质证,进而由,即可由垂径定理得到F是的中点,根据圆周角定理可得,可得平分;由三角形的外角性质和同弧所对的圆周角相等可得,可得,可得点为得外心;如图,过点C作交的延长线与点通过证明,可得;如图,作点关于的对称点,当点在线段上,且时,.【详解】如图,连接,∵是的切线,∴,∵∴,且为半径∴垂直平分∴∴∴平分,故正确点的外心,故正确;如图,过点C作交的延长线与点,故正确;如图,作点关于的对称点,点与点关于对称,当点在线段上,且时,,且∴的最小值为;故正确.故答案为:.【点睛】本题是相似综合题,考查了圆的相关知识,相似三角形的判定和性质,轴对称的性质,灵活运用这些性质进行推理是本题的关键.三、解答题(共66分)19、(1)证明见解析;(2)6π.【分析】(1)连接,交于,由可知,,又,四边形为平行四边形,则,由圆周角定理可知,由内角和定理可求,即可得证结论.(2)证明,将阴影部分面积问题转化为求扇形的面积求解.【详解】连接交于点,如图:∵∴∴在中,∴∵∴∴是的切线(2)由(1)可知,在和中,∴∴∴【点睛】本题考查了圆周角定理、平行线的判定、平行四边形的判定和性质、切线的判定和性质、垂径定理、扇形面积的计算以及转换思想和数形结合思想的应用,熟悉各知识点内容是推理论证的前提.20、(1);(2)3;(3)面积的最大值为.【分析】(1)由题意分别将x=0、y=0代入二次函数解析式中求出点C、A的坐标,再根据点A、C的坐标利用待定系数法即可求出直线AC的解析式;(2)由题意先根据二次函数解析式求出顶点,进而利用割补法求面积;(3)根据题意过点作轴交于点并设点的坐标为(),则点的坐标为进而进行分析.【详解】解:(1)分别将x=0、y=0代入二次函数解析式中求出点C、A的坐标为;;将;代入,得到直线的解析式为.(2)由,将其化为顶点式为,可知顶点P为,如图P为顶点时连接PC并延长交x轴于点G,则有,将P点和C点代入求出PC的解析式为,解得G为,所有=3;(3)过点作轴交于点.设点的坐标为(),则点的坐标为∴,当时,取最大值,最大值为.∵,∴面积的最大值为.【点睛】本题考查待定系数法求一次函数解析式、二次函数图象上点的坐标特征、等腰三角形的性质、二次函数的性质以及解二元一次方程组,解题的关键是利用待定系数法求出直线解析式以及利用二次函数的性质进行综合分析.21、1【分析】根据直线与双曲线有交点可得,变形为,根据一元二次方程根与系数的关系,得出,再化简为,再将的值代入即可得出答案.【详解】解:由题意得:,∴,∴∴=故答案为:1.【点睛】本题考查了一次函数与反比例函数的综合,根据一元二次方程的根与系数的关系得出的值是解题的关键.22、(1)见解析;(2)【分析】(1)连接,根据等腰三角形的性质得到,求得,根据三角形的内角和得到,于是得到是的切线;(2)连接,推出是等边三角形,得到,求得,得到,于是得到结论.【详解】(1)证明:连接,∵,∴,∵,∴,∴,∴,∴是的切线;(2)解:连接,∵,∴是等边三角形,∴,∴,∴,∴,∴的半径.【点睛】本题考查了切线的判定和性质,等腰三角形的性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.23、(1)证明见解析;(2).【分析】(1)连接,易得,由,易得,等量代换得,利用平行线的判定得,由切线的性质得,得出结论;(2)连接,利用(1)的结论得,易得,得出,利用扇形的面积公式和三角形的面积公式得出结论.【详解】(1)证明:连接,,,∵AB=AC,∴∠ABC=∠ACB.∴∠ODB=∠ACB,∴OD∥AC.∵DF是⊙O的切线,∴DF⊥OD.∴DF⊥AC.(2)连结OE,∵DF⊥AC,∠CDF=1.5°.∴∠ABC=∠ACB=2.5°,∴∠BAC=45°.∵OA=OE,∴∠AOE=90°.的半径为4,,,.【点睛】本题主要考查了切线的性质,扇形的面积与三角形的面积公式,圆周角定理等,作出适当的辅助线,利用切线性质和圆周角定理,数形结
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国氟化苯甲醛行业市场分析及投资价值评估前景预测报告
- 2024年三年级品社下册《八一军旗红》说课稿 沪教版
- 口腔临床知识培训价位表课件
- 第2课 三点水说课稿-2023-2024学年小学书法练习指导四年级下册西泠版
- 高级车工考试题库及答案
- 高等管理学考试题及答案
- 1水到哪里去了 教学设计-科学三年级上册教科版
- 山东省郯城县七年级生物下册 4.4.3 输送血液的泵-心脏(一)说课稿 (新版)新人教版
- 2025年云计算技术中级工程师面试题库及解析
- 2025年体育经纪业务基础与面试模拟题答案详解初级
- 外研版(三起)五年级上册英语期末完形填空专题训练
- 广东省惠州市联考2024-2025学年上学期12月教学质量阶段性诊断八年级数学试卷(无答案)
- 足下垂康复治疗
- GB/T 15822.3-2024无损检测磁粉检测第3部分:设备
- 工程结算协议书
- 2024-2030年中国痘痘贴行业营销动态及消费需求预测研究报告
- (高清版)AQ 1075-2009 煤矿低浓度瓦斯往复式内燃机驱动的交流发电机组通 用技术条件
- 六年级上册道德与法治全册教学课件
- 中国食物成分表2018年(标准版)第6版
- 疑问句(课件)六年下册英语人教PEP版
- 郑州铁路职业技术学院单招职业技能测试参考试题库(含答案)
评论
0/150
提交评论