版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.若点A(﹣1,0)为抛物线y=﹣3(x﹣1)2+c图象上一点,则当y≥0时,x的取值范围是()A.﹣1<x<3 B.x<﹣1或x>3 C.﹣1≤x≤3 D.x≤﹣1或x≥32.一个不透明的盒子中装有5个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球与摸到白球的可能性相等D.摸到红球比摸到白球的可能性大3.数据1,3,3,4,5的众数和中位数分别为()A.3和3 B.3和3.5 C.4和4 D.5和3.54.下列事件中,属于必然事件的是()A.掷一枚硬币,正面朝上. B.抛出的篮球会下落.C.任意的三条线段可以组成三角形 D.同位角相等5.一元二次方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.有一个实数根 D.无实数根6.如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是()A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<27.抛物线与y轴的交点为()A. B. C. D.8.二次函数的图象如图所示,则一次函数与反比例函数在同一平面直角坐标系中的大致图象为()A. B. C. D.9.如图,已知在中,,于,则下列结论错误的是()A. B. C. D.10.方程x(x-1)=2(x-1)2的解为()A.1 B.2 C.1和2 D.1和-2二、填空题(每小题3分,共24分)11.从地面竖直向上抛出一小球,小球离地面的高度h(米)与小球运动时间t(秒)之间关系是h=30t﹣5t2(0≤t≤6),则小球从抛出后运动4秒共运动的路径长是________米.12.如图,的半径为,的面积为,点为弦上一动点,当长为整数时,点有__________个.13.如图,在中,,于点,,,则_________;14.一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字小于3的概率是__________.15.二次函数图象的对称轴是______________.16.在一个不透明的袋子中装有8个红球和16个白球,它们只有颜色上的区别,现从袋中取走若干个红球,并放入相同数量的白球,搅拌均匀后,要使从袋中任意摸出一个球是红球的概率是,则取走的红球为_______个.17.如图,圆锥的底面半径OB=6cm,高OC=8cm,则该圆锥的侧面积是_____cm1.18.做任意抛掷一只纸杯的重复实验,部分数据如下表抛掷次数50100500800150030005000杯口朝上的频率0.10.150.20.210.220.220.22根据上表,可估计任意抛掷一只纸杯,杯口朝上的概率约为__________.三、解答题(共66分)19.(10分)如图,四边形ABCD为矩形.(1)如图1,E为CD上一定点,在AD上找一点F,使得矩形沿着EF折叠后,点D落在BC边上(尺规作图,保留作图痕迹);(2)如图2,在AD和CD边上分别找点M,N,使得矩形沿着MN折叠后BC的对应边B'C'恰好经过点D,且满足B'C'⊥BD(尺规作图,保留作图痕迹);(3)在(2)的条件下,若AB=2,BC=4,则CN=.20.(6分)如图二次函数的图象与轴交于点和两点,与轴交于点,点、是二次函数图象上的一对对称点,一次函数的图象经过、(1)求二次函数的解析式;(2)写出使一次函数值大于二次函数值的的取值范围;(3)若直线与轴的交点为点,连结、,求的面积;21.(6分)如图,在平面直角坐标系中,的三个顶点坐标分别为、、.(1)点关于坐标原点对称的点的坐标为______;(2)将绕着点顺时针旋转,画出旋转后得到的;(3)在(2)中,求边所扫过区域的面积是多少?(结果保留).(4)若、、三点的横坐标都加3,纵坐标不变,图形的位置发生怎样的变化?22.(8分)图1是一辆登高云梯消防车的实物图,图2是其工作示意图,起重臂AC是可伸缩的,其转动点A距离地面BD的高度AE为3.5m.当AC长度为9m,张角∠CAE为112°时,求云梯消防车最高点C距离地面的高度CF.(结果精确到0.1m,参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.1.)23.(8分)在平面直角坐标系xOy中,抛物线y=ax2+bx+c的开口向上,与x轴相交于A、B两点(点A在点B的右侧),点A的坐标为(m,0),且AB=1.(1)填空:点B的坐标为(用含m的代数式表示);(2)把射线AB绕点A按顺时针方向旋转135°与抛物线交于点P,△ABP的面积为8:①求抛物线的解析式(用含m的代数式表示);②当0≤x≤1,抛物线上的点到x轴距离的最大值为时,求m的值.24.(8分)如图,已知直线与轴、轴分别交于点与双曲线分别交于点,且点的坐标为.(1)分别求出直线、双曲线的函数表达式;(2)求出点的坐标;(3)利用函数图像直接写出:当在什么范围内取值时.25.(10分)已知二次函数y=﹣x2+2x+m.(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;(2)如图,二次函数的图象过点A(-1,0),与y轴交于点C,求直线BC与这个二次函数的解析式;(3)在直线BC上方的抛物线上有一动点D,DEx轴于E点,交BC于F,当DF最大时,求点D的坐标,并写出DF最大值.26.(10分)小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数;(3)请估计该市这一年(365天)达到优和良的总天数.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据点A(﹣1,0)为抛物线y=﹣3(x﹣1)2+c图象上一点,可以求得c的值,从而可以得到该抛物线的解析式,然后令y=0,求得抛物线与x轴的交点,然后根据二次函数的性质即可得到当y≥0时,x的取值范围.【详解】解:∵点A(﹣1,0)为抛物线y=﹣3(x﹣1)2+c图象上一点,∴0=﹣3(﹣1﹣1)2+c,得c=12,∴y=﹣3(x﹣1)2+12,当y=0时,﹣3(x﹣1)2+12=0,解得:x1=﹣1,x2=3,又∵-3<0,抛物线开口向下,∴当y≥0时,x的取值范围是﹣1≤x≤3,故选:C.【点睛】本题考查抛物线与x轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.2、D【解析】根据可能性的大小,以及随机事件的判断方法,逐项判断即可.【详解】∵摸到红球是随机事件,∴选项A不符合题意;∵摸到白球是随机事件,∴选项B不符合题意;
∵红球比白球多,∴摸到红球比摸到白球的可能性大,∴选项C不符合题意,D符合题意.故选:D.【点睛】此题主要考查了可能性的大小,以及随机事件的判断,要熟练掌握,解答此题的关键是要明确:在一定条件下,可能发生也可能不发生的事件,称为随机事件.3、A【分析】根据众数和中位数的定义:一般来说,一组数据中,出现次数最多的数就叫这组数据的众数;把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数;即可得解.【详解】由已知,得该组数据中,众数为3,中位数为3,故答案为A.【点睛】此题主要考查对众数、中位数概念的理解,熟练掌握,即可解题.4、B【分析】直接利用随机事件以及必然事件的定义分别分析得出答案.【详解】A、掷一枚硬币,正面朝上,是随机事件,故此选项错误;B、抛出的篮球会下落是必然事件,故此选项正确;
C、任意三条线段可以组成一个三角形是随机事件,故此选项错误;
D、同位角相等,属于随机事件,故此选项错误;故选:B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5、B【分析】把一元二次方程转换成一般式:(),再根据求根公式:,将相应的数字代入计算即可.【详解】解:由题得:∴一元二次方程有两个相等的实数根故选:B.【点睛】本题主要考查的是一元二次方程的一般式和求根公式,掌握一般式和求根公式是解题的关键.6、C【解析】一次函数y1=kx+b落在与反比例函数y2=图象上方的部分对应的自变量的取值范围即为所求.【详解】∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2,故选C.【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.7、C【解析】令x=0,则y=3,抛物线与y轴的交点为(0,3).【详解】解:令x=0,则y=3,
∴抛物线与y轴的交点为(0,3),
故选:C.【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,会求函数与坐标轴的交点是解题的关键.8、B【解析】∵二次函数图象开口向上,∴a>1,∵对称轴为直线,∴b<1.∵与y轴的正半轴相交,∴c>1.∴的图象经过第一、三、四象限;反比例函数图象在第一、三象限,只有B选项图象符合.故选B.9、A【分析】根据三角形的面积公式判断A、D,根据射影定理判断B、C.【详解】由三角形的面积公式可知,CD•AB=AC•BC,A错误,符合题意,D正确,不符合题意;
∵Rt△ABC中,∠ACB=90°,CD⊥AB,
∴AC2=AD•AB,BC2=BD•AB,B、C正确,不符合题意;
故选:A.【点睛】本题考查的是射影定理、三角形的面积计算,掌握射影定理、三角形的面积公式是解题的关键.10、C【分析】利用因式分解法求解可得.【详解】x(x-1)=2(x-1)2,x(x-1)-2(x-1)2=0,(x-1)(x-2x+2)=0,即(x-1)(-x+2)=0,∴x-1=0或-x+2=0,解得:x=1或x=2,故选:C.【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.二、填空题(每小题3分,共24分)11、1【分析】根据题目中的函数解析式可以求得h的最大值,从而可以求得小球从抛出后运动4秒共运动的路径长.【详解】解:∵h=30t−5t2=−5(t−3)2+45(0≤t≤6),∴当t=3时,h取得最大值,此时h=45,∴小球从抛出后运动4秒共运动的路径长是:45+[45−(30×4−5×42)]=1(米),故答案为1.【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,求出相应的路径的长.12、4【分析】从的半径为,的面积为,可得∠AOB=90°,故OP的最小值为OP⊥AB时,为3,最大值为P与A或B点重合时,为6,故,当长为整数时,OP可以为5或6,根据圆的对称性,这样的P点共有4个.【详解】∵的半径为,的面积为∴∠AOB=90°又OA=OB=6∴AB=当OP⊥AB时,OP有最小值,此时OP=AB=当P与A或B点重合时,OP有最大值,为6,故当OP长为整数时,OP可以为5或6,根据圆的对称性,这样的P点共有4个.故答案为:4【点睛】本题考查的是圆的对称性及最大值、最小值问题,根据“垂线段最短”确定OP的取值范围是关键.13、【分析】根据相似三角形的判定得到△ABC∽△CBD,从而可根据其相似比求得AC的长.【详解】∵,,,∴∠BDC=∠BCA=90°,∠CBD+∠ABC=90°,BC=3,∴△ABC∽△CBD,
∴AC:CD=CB:BD,即AC:=3:2,∴AC=.
故答案为:.【点睛】本题考查相似三角形的判定和性质、勾股定理.14、【分析】利用公式直接计算.【详解】解:这六个数字中小于3的有1和2两种情况,则P(向上一面的数字小于3)=.故答案为:【点睛】本题考查概率的计算.15、直线【分析】根据二次函数的顶点式直接得出对称轴.【详解】二次函数图象的对称轴是x=1.故答案为:直线x=1【点睛】本题考查的是根据二次函数的顶点式求对称轴.16、1【解析】设取走的红球有x个,根据概率公式可得方程,解之可得答案.【详解】设取走的红球有x个,根据题意,得:,解得:x=1,即取走的红球有1个,故答案为:1.【点睛】此题主要考查了概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.17、60π【分析】先利用勾股定理求出BC的长度,然后利用扇形的面积公式求解即可.【详解】解:∵它的底面半径OB=6cm,高OC=8cm.∴BC==10(cm),∴圆锥的侧面积是:(cm1).故答案为:60π.【点睛】本题主要考查勾股定理及扇形的面积公式,掌握勾股定理及扇形的面积公式是解题的关键.18、0.1【解析】观察表格的数据可以得到杯口朝上的频率,然后用频率估计概率即可求解.【详解】解:依题意得杯口朝上频率逐渐稳定在0.1左右,
估计任意抛掷一只纸杯,杯口朝上的概率约为0.1.
故答案为:0.1.【点睛】本题考查利用频率估计概率,首先通过实验得到事件的频率,然后用频率估计概率即可解决问题.三、解答题(共66分)19、(1)图见解析(2)图见解析(3)【分析】(1)以点E为圆心,以DE长为半径画弧,交BC于点D′,连接DD′,作DD′的垂直平分线交AD于点F即可;(2)先作射线BD,然后过点D作BD的垂线与BC的延长线交于点H,作∠BHD的角平分线交CD于点N,交AD于点M,在HD上截取HC′=HC,然后在射线C′D上截取C′B′=BC,此时的M、N即为满足条件的点;(3)在(2)的条件下,根据AB=2,BC=4,即可求出CN的长.【详解】(1)如图,点F为所求;(2)如图,折痕MN、矩形A’B’C’D’为所求;(3)在(2)的条件下,∵AB=2,BC=4,∴BD=2,∵BD⊥B′C′,∴BD⊥A′D′,得矩形DGD′C′.∴DG=C′D′=2,∴BG=2−2设CN的长为x,CD′=y.则C′N=x,D′N=2−x,BD′=4−y,∴(4−y)2=y2+(2−2)2,解得y=−1.(2−x)2=x2+(−1)2解得x=.故答案为:.【点睛】本题考查了作图−复杂作图、矩形的性质、翻折变换,解决本题的关键是掌握矩形的性质.20、(1);(2)或;(3)1.【分析】(1)直接将已知点代入函数解析式求出即可;(2)利用函数图象结合交点坐标得出使一次函数值大于二次函数值的x的取值范围;(3)分别得出EO,AB的长,进而得出面积.【详解】(1)∵二次函数与轴的交点为和∴设二次函数的解析式为:∵在抛物线上,∴3=a(0+3)(0-1),解得a=-1,所以解析式为:;(2)=−x2−2x+3,∴二次函数的对称轴为直线;∵点、是二次函数图象上的一对对称点;∴;∴使一次函数大于二次函数的的取值范围为或;(3)设直线BD:y=mx+n,代入B(1,0),D(−2,3)得,解得:,故直线BD的解析式为:y=−x+1,把x=0代入得,y=3,所以E(0,1),∴OE=1,又∵AB=1,∴S△ADE=×1×3−×1×1=1.【点睛】此题主要考查了待定系数法求一次函数和二次函数解析式,利用数形结合得出是解题关键.21、(1)(1,-1);(2)见详解;(3);(4)图形的位置是向右平移了3个单位.【分析】(1)先求出点B的坐标,再点关于坐标原点对称的点的坐标即可;(2)根据将绕着点顺时针旋转的坐标特征即可得到A1、B1、C1的坐标,然后描点连线即可;
(3)利用扇形面积公式进行计算可得线段AC旋转时扫过的面积.(4)、、三点的横坐标都加3,即图形的位置是向右平移了3个单位.【详解】解:(1)∵点B的坐标是,∴点关于坐标原点对称的点的坐标为(1,-1);(2)如图所示,即为所求作的图形;(3)∵,∴;(4)∵、、三点的横坐标都加3,纵坐标不变,∴图形的位置是向右平移了3个单位.【点睛】本题考查了利用旋转变换作图以及扇形面积的计算,熟练掌握网格结构,准确找出对应顶点的位置是解题的关键.22、CF≈6.8m.【分析】如图,作AG⊥CF于点G,易得四边形AEFG为矩形,则FG=AE=3.5m,∠EAG=90°,再计算出∠GAC=28°,则在Rt△ACG中利用正弦可计算出CG,然后计算CG+GF即可.【详解】如图,作AG⊥CF于点G,∵∠AEF=∠EFG=∠FGA=90°,∴四边形AEFG为矩形,∴FG=AE=3.5m,∠EAG=90°,∴∠GAC=∠EAC﹣∠EAG=112°﹣90°=22°,在Rt△ACG中,sin∠CAG=,∴CG=AC•sin∠CAG=9sin22°≈9×0.37=3.33m,∴CF=CG+GF=3.33+3.5≈6.8m.【点睛】本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用勾股定理和三角函数的定义进行几何计算.23、(1)(m﹣1,0);(3)①y=(x﹣m)(x﹣m+1);②m的值为:3+3或3﹣3或3≤m≤3.【分析】(1)A的坐标为(m,0),AB=1,则点B坐标为(m-1,0);(3)①S△ABP=•AB•yP=3yP=8,即:yP=1,求出点P的坐标为(1+m,1),即可求解;②抛物线对称轴为x=m-3.分x=m-3≥1、0≤x=m-3≤1、x=m-3≤0三种情况,讨论求解.【详解】解:(1)A的坐标为(m,0),AB=1,则点B坐标为(m﹣1,0),故答案为(m﹣1,0);(3)①S△ABP=AB•yP=3yP=8,∴yP=1,把射线AB绕点A按顺时针方向旋转135°与抛物线交于点P,此时,直线AP表达式中的k值为1,设:直线AP的表达式为:y=x+b,把点A坐标代入上式得:m+b=0,即:b=﹣m,则直线AP的表达式为:y=x﹣m,则点P的坐标为(1+m,1),则抛物线的表达式为:y=a(x﹣m)(x﹣m+1),把点P坐标代入上式得:a(1+m﹣m)(1+m﹣m+1)=1,解得:a=,则抛物线表达式为:y=(x﹣m)(x﹣m+1),②抛物线的对称轴为:x=m﹣3,当x=m﹣3≥1(即:m≥3)时,x=0时,抛物线上的点到x轴距离为最大值,即:(0﹣m)(0﹣m+1)=,解得:m=3或3±3,∵m≥3,故:m=3+3;当0≤x=m﹣3≤1(即:3≤m≤3)时,在顶点处,抛物线上的点到x轴距离为最大值,即:﹣(m﹣3﹣m)(m﹣3﹣m+1)=,符合条件,故:3≤m≤3;当x=m﹣3≤0(即:m≤3)时,x=1时,抛物线上的点到x轴距离为最大值,即:(1﹣m)(1﹣m+1)=,解得:m=3或3±3,∵m≤3,故:m=3﹣3;综上所述,m的值为:3+3或3﹣3或3≤m≤3.【点睛】本题考查的是二次函数知识的综合运用,涉及到图象旋转、一次函数基本知识等相关内容,其中(3)中,讨论抛物线对称轴所处的位置与0,1的关系是本题的难点.24、(1),;(2)D;(3).【分析】(1)把代入得到的值,把代入双曲线得到的值;(2)把一次函数和反比例函数的解析式联立方程,解方程即可求得;(3)直线图象在双曲线上方的部分时的值,即为时的取值范围.【详解】解:(1)把点代入,得:,直线的解析式;把点代入,得:,双曲线的解析式;(2)解得,,点的坐标为;(3),的坐标为,观察图形可知:当时,的取值范围为:.【点睛】本题考查了反比例函数与一次函数图象的交点问题:把两函数的解析式联立起来组成方程组,解方程组即可得到它们的交点坐标.也考查了数形结合的思想,利用数形结合解决取值范围的问题,是非常有效的方法.25、(1)m>-1;(2)y=-x+3,y=-x2+2x+3;(3)D(),DF=【分析】(1)利用判别式解答即可;(2)将点A的坐标代入抛物线y=-x2+2x+m即可求出解析式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年大学心理学(心理学基础)试题及答案
- 2025年大学经济法(经济法)试题及答案
- 2025年大二(社会体育指导与管理)运动生理学期末试题
- 2025年中职会计(会计法规基础)试题及答案
- 2025年高职市政工程技术(城市道路工程施工)试题及答案
- 2025年中职(包装产品销售)防护功能阶段测试卷
- 2025年高职数字媒体艺术设计(媒体应用)试题及答案
- 2025年中职机电(机电基础应用)试题及答案
- 2025年大学大三(预防医学)健康教育与促进试题及答案
- 2025年大学护理学(老年护理实训)试题及答案
- 新疆开放大学2025年春《建筑构造实训》形考作业【标准答案】
- 2025年湖南水利水电职业技术学院单招职业技能测试题库附答案
- 建设工程质量管理手册范本
- 医院申请医养结合申请书
- 2024-2025学年山东省滨州市北镇中学鸿蒙班九年级下学寒假开学考试数学试题
- 园林绿化服务方案(3篇)
- 2025年流产家属签字协议书
- 2025年《中医护理适宜技术临床应用指南》
- 下颌阻生齿拔除病例汇报
- DBJ04-T 491-2025 建设工程消防设计审查验收文件归档标准
- DB45∕T 2419-2021 钻孔管波探测技术规程
评论
0/150
提交评论