版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,点A、B、C在上,∠A=72°,则∠OBC的度数是()A.12° B.15° C.18° D.20°2.已知函数的图象与x轴有交点.则的取值范围是()A.k<4 B.k≤4 C.k<4且k≠3 D.k≤4且k≠33.如图,△ODC是由△OAB绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,则∠A的度数为()A.70° B.75° C.60° D.65°4.下图中,最能清楚地显示每组数据在总数中所占百分比的统计图是()A. B.C. D.5.如图,河堤横断面迎水坡的坡比是,堤高,则坡面的长度是()A. B. C. D.6.已知:不在同一直线上的三点A,B,C求作:⊙O,使它经过点A,B,C作法:如图,(1)连接AB,作线段AB的垂直平分线DE;(2)连接BC,作线段BC的垂直平分线FG,交DE于点O;(3)以O为圆心,OB长为半径作⊙O.⊙O就是所求作的圆.根据以上作图过程及所作图形,下列结论中正确的是()A.连接AC,则点O是△ABC的内心 B.C.连接OA,OC,则OA,OC不是⊙的半径 D.若连接AC,则点O在线段AC的垂直平分线上7.已知反比例函数的图象在二、四象限,则的取值范围是()A. B. C. D.8.下列说法中错误的是()A.成中心对称的两个图形全等B.成中心对称的两个图形中,对称点的连线被对称轴平分C.中心对称图形的对称中心是对称点连线的中心D.中心对称图形绕对称中心旋转180°后,都能与自身重合9.如图,在矩形中,于,设,且,,则的长为()A. B. C. D.10.事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则()A.事件①是必然事件,事件②是随机事件 B.事件①是随机事件,事件②是必然事件C.事件①和②都是随机事件 D.事件①和②都是必然事件二、填空题(每小题3分,共24分)11.不等式组x-2>0①2x-6>2②的解是________12.一件商品的原价是100元,经过两次提价后的价格为121元,设平均每次提价的百分率都是x.根据题意,可列出方程___________________.13.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠CDA=122°,则∠C=_______.14.如图,反比例函数的图象经过点,过作轴垂线,垂足是是轴上任意一点,则的面积是_________.15.如图在平面直角坐标系中,若干个半径为个单位长度、圆心角为的扇形组成一条连续的曲线,点从原点出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒2个单位,在弧线上的速度为每秒个单位长度,则秒时,点的坐标是_______;秒时,点的坐标是_______.16.如果两个相似三角形的对应边的比是4:5,那么这两个三角形的面积比是_____.17.在平面直角坐标系中,反比例函数的图象经过点,,则的值是__________.18.计算:=_____.三、解答题(共66分)19.(10分)如图,内接于,且为的直径.的平分线交于点,过点作的切线交的延长线于点,过点作于点,过点作于点.(1)求证:;(2)试猜想线段,,之间有何数量关系,并加以证明;(3)若,,求线段的长.20.(6分)已知二次函数的图象经过三点(1,0),(-6,0)(0,-3).(1)求该二次函数的解析式.(2)若反比例函数的图象与二次函数的图象在第一象限内交于点A(),落在两个相邻的正整数之间,请求出这两个相邻的正整数.(3)若反比例函数的图象与二次函数的图象在第一象限内的交点为B,点B的横坐标为m,且满足3<m<4,求实数k的取值范围.21.(6分)如图,在A港口的正东方向有一港口B.某巡逻艇从A港口沿着北偏东60°方向巡逻,到达C处时接到命令,立刻在C处沿东南方向以20海里/小时的速度行驶2小时到达港口B.求A,B两港之间的距离(结果保留根号).22.(8分)为响应市政府“创建国家森林城市”的号召,某小区计划购进A,B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元。设购进A种树苗x棵,购买两种树苗的总费用为w元。(1)写出w(元)关于x(棵)的函数关系式;(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用。23.(8分)(1)如图①,在△ABC中,AB=m,AC=n(n>m),点P在边AC上.当AP=时,△APB∽△ABC;(2)如图②,已知△DEF(DE>DF),请用直尺和圆规在直线DF上求作一点Q,使DE是线段DF和DQ的比例项.(保留作图痕迹,不写作法)24.(8分)如图1,点E是正方形ABCD边CD上任意一点,以DE为边作正方形DEFG,连接BF,点M是线段BF中点,射线EM与BC交于点H,连接CM.(1)请直接写出CM和EM的数量关系和位置关系;(2)把图1中的正方形DEFG绕点D顺时针旋转45°,此时点F恰好落在线段CD上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由;(3)把图1中的正方形DEFG绕点D顺时针旋转90°,此时点E、G恰好分别落在线段AD、CD上,如图3,其他条件不变,(1)中的结论是否成立,请说明理由.25.(10分)下面是一位同学做的一道作图题:已知线段、、(如图所示),求作线段,使.他的作法如下:1.以下为端点画射线,.2.在上依次截取,.3.在上截取.4.联结,过点作,交于点.所以:线段______就是所求的线段.(1)试将结论补完整:线段______就是所求的线段.(2)这位同学作图的依据是______;(3)如果,,,试用向量表示向量.26.(10分)如图,已知一次函数分别交x、y轴于A、B两点,抛物线y=﹣x2+bx+c经过A、B两点,与x轴的另一交点为C.(1)求b、c的值及点C的坐标;(2)动点P从点O出发,以每秒1个单位长度的速度向点A运动,过P作x轴的垂线交抛物线于点D,交线段AB于点E.设运动时间为t(t>0)秒.①当t为何值时,线段DE长度最大,最大值是多少?(如图1)②过点D作DF⊥AB,垂足为F,连结BD,若△BOC与△BDF相似,求t的值.(如图2)
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据圆周角定理可得∠BOC的度数,根据等腰三角形的性质即可得答案.【详解】∵点A、B、C在上,∠A=72°,∴∠BOC=2∠A=144°,∵OB=OC,∴∠OBC=∠OCB=(180°-∠BOC)=18°,故选:C.【点睛】本题考查圆周角定理及等腰三角形的性质,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;熟练掌握圆周角定理是解题关键.2、B【解析】试题分析:若此函数与x轴有交点,则,Δ≥0,即4-4(k-3)≥0,解得:k≤4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B.考点:函数图像与x轴交点的特点.3、B【分析】由旋转的性质知∠AOD=30°,OA=OD,根据等腰三角形的性质及内角和定理可得答案.【详解】由题意得:∠AOD=30°,OA=OD,∴∠A=∠ADO75°.故选B.【点睛】本题考查了旋转的性质,熟练掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等是解题的关键.4、A【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【详解】解:在进行数据描述时,要显示部分在总体中所占的百分比,应采用扇形统计图.
故选:A.【点睛】本题考查统计图的选择,解决本题的关键是明确:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频率分布直方图,清楚显示在各个不同区间内取值,各组频率分布情况,易于显示各组之间频率的差别.5、D【分析】直接利用坡比的定义得出AC的长,进而利用勾股定理得出答案.【详解】∵河堤横断面迎水坡AB的坡比是,∴,∴,解得:AC=,故AB===8(m),故选:D.【点睛】此题主要考查了解直角三角形的应用,正确掌握坡比的定义是解题关键.6、D【分析】根据三角形的外心性质即可解题.【详解】A:连接AC,根据题意可知,点O是△ABC的外心,故A错误;B:根据题意无法证明,故B错误;C:连接OA,OC,则OA,OC是⊙的半径,故C错误D:若连接AC,则点O在线段AC的垂直平分线上,故D正确故答案为:D.【点睛】本题考查了三角形的确定即不在一条线上的三个点确定一个圆,这个圆是三角形的外接圆,o是三角形的外心.7、D【分析】由题意根据反比例函数的性质即可确定的符号,进行计算从而求解.【详解】解:因为反比例函数的图象在二、四象限,所以,解得.故选:D.【点睛】本题考查反比例函数的性质,注意掌握反比例函数,当k>0时,反比例函数图象在一、三象限;当k<0时,反比例函数图象在第二、四象限内.8、B【解析】试题分析:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称中心对称,中心对称图形的对称中心是对称点连线的交点,根据中心对称图形的定义和性质可知A、C、D正确,B错误.故选B.考点:中心对称.9、C【分析】根据矩形的性质可知:求AD的长就是求BC的长,易得∠BAC=∠ADE,于是可利用三角函数的知识先求出AC,然后在直角△ABC中根据勾股定理即可求出BC,进而可得答案.【详解】解:∵四边形ABCD是矩形,∴∠B=∠BAC=90°,BC=AD,∴∠BAC+∠DAE=90°,∵,∴∠ADE+∠DAE=90°,∴∠BAC=,在直角△ABC中,∵,,∴,∴AD=BC=.故选:C.【点睛】本题考查了矩形的性质、勾股定理和解直角三角形的知识,属于常考题型,熟练掌握矩形的性质和解直角三角形的知识是解题关键.10、C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:射击运动员射击一次,命中靶心是随机事件;购买一张彩票,没中奖是随机事件,故选C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题(每小题3分,共24分)11、x>4【分析】分别解出不等式组中的每一个不等式,然后根据同大取大得出不等式组的解集.【详解】由①得:x>2;由②得:x>4;∴此不等式组的解集为x>4;故答案为x>4.【点睛】考查了解一元一次不等式组,一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12、100(1+x)2=1.【详解】设平均每次提价的百分率为x,根据原价为100元,表示出第一次提价后的价钱为100(1+x)元,第二次提价的价钱为100(1+x)2元,根据两次提价后的价钱为1元,列出关于x的方程100(1+x)2=1.考点:一元二次方程的应用.13、26°【分析】连接OD,如图,根据切线的性质得∠ODC=90°,即可求得∠ODA=32°,再利用等腰三角形的性质得∠A=32°,然后根据三角形内角和定理计算即可.【详解】连接OD,如图,
∵CD与⊙O相切于点D,
∴OD⊥CD,
∴∠ODC=90°,
∴∠ODA=∠CDA-90°=122°-90°=32°,
∵OA=OD,
∴∠A=∠ODA=32°,
∴∠C=180°-∠ADC+∠A=180°-122°-32°=26°.
故答案为:.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.14、【分析】连接OA,根据反比例函数中k的几何意义可得,再根据等底同高的三角形的面积相等即可得出结论【详解】解:连接OA,∵反比例函数的图象经过点,∴;∵过作轴垂线,垂足是;∴AB//OC∴和等底同高;∴;故答案为:【点睛】本题考查了反比例函数比例系数的几何意义、等底同高的三角形的面积,熟练掌握反比例函数的性质是解题的关键15、【分析】设第n秒时P的位置为Pn,P5可直接求出,根据点的运动规律找出规律,每4秒回x轴,P4n(4n,0),由2019=504×4+3,回到在P3的位置上,过P3作P3B⊥x轴于B,则OB=3,P3B=,P3(3,-),当t=2019时,OP2019=OP2016+OB,此时P2019点纵坐标与P3纵坐标相同,即可求.【详解】设n秒时P的位置为Pn,过P5作P5A⊥x轴于A,OP4=OP2+P2P4=4,P4(4,0),当t=5时,由扇形知P4P5=2,OP4=4,在Rt△P4P5A中,∠P5P4A=60º,则∠P4P5A=90º-∠P5P4A=60º=30º,P4A=P4P5=1,由勾股定理得PA=,OA=OP4+AP4=5,由点P在第一象限,P(5,),通过图形中每秒后P的位置发现,每4秒一循环,2019=504×4+3,回到相对在P3的位置上,过P3作P3B⊥x轴于B,则OB=3,P3B=,由P3在第四象限,则P3(3,-),当t=2019时,OP2019=OP2016+OB=4×504+3=2019,P2019点纵坐标与P3纵坐标相同,此时P2019坐标为(2019,-),秒时,点的坐标是(2019,-).故答案为:(5,),(2019,-).【点睛】本题考查规律中点P的坐标问题关键读懂题中的含义,利用点运动的速度,考查直线与弧线的时间,发现都用1秒,而每4秒就回到x轴上,由此发现规律便可解决问题.16、16:25【分析】根据相似三角形的面积的比等于相似比的平方,据此即可求解.【详解】解:∵两个相似三角形的相似比为:,∴这两个三角形的面积比;故答案为:∶.【点睛】本题考查了相似三角形性质,解题的关键是熟记相似三角形的性质.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.17、【分析】将点B的坐标代入反比例函数求出k,再将点A的坐标代入计算即可;【详解】(1)将代入得,k==-6,所以,反比例函数解析式为,将点的坐标代入得所以m=,故填:.【点睛】此题主要考查反比例函数的图像与性质,解题的关键是熟知待定系数法求解析式.18、3【解析】原式利用平方根的定义化简即可得到结果.【详解】=3,故答案为3【点睛】本题考查了二次根式的平方,熟练掌握平方根的定义是解本题的关键.三、解答题(共66分)19、(1)见解析;(2),证明见解析;(3)【分析】(1)连结OD,先由已知△ABD是等腰直角三角形,得DO⊥AB,再根据切线的性质得OD⊥PD,于是可得到DP∥AB;(2)由“一线三垂直模型”易得,进而可得.(3)利用勾股定理依次可求直径AB=10,,,得,再证明可得,,进而由求得PD即可.【详解】(1)证明:连结,如图,∵为的直径,∴,∵的平分线交于点,∴,∴,∴为等腰直角三角形,∴,∵为的切线,∴,∴;(2)答:,证明如下:∵是的直径,∴,∵,,∴,∴,∴,∵,∴,在和中,∴,∴,,∴,即.(3)解:在中,,∵为等腰直角三角形,∴∵,∴为等腰直角三角形,∴,在中,,∴,∵,,∴,∴,∴,,而,∴,∴.【点睛】本题考查了切线的性质:圆的切线垂直于过切点的半径.也考查了圆周角定理定理、等腰直角三角形的性质和三角形相似的判定与性质.解题关键是抓住45°角得等腰直角三角形进行解答.20、(1);(2)1与2;(3)【分析】(1)已知了抛物线与x轴的交点,可用交点式来设二次函数的解析式.然后将另一点的坐标代入即可求出函数的解析式;(2)可根据(1)的抛物线的解析式和反比例函数的解析式来联立方程组,求出的方程组的解就是两函数的交点坐标,然后找出第一象限内交点的坐标,即可得出符合条件的的值,进而可写出所求的两个正整数即可;(3)点B的横坐标为m,满足3<m<4,可通过m=3,m=4两个点上抛物线与反比例函数的大小关系即可求出k的取值范围.【详解】解:(1)∵二次函数图像经过(1,0),(-6,0),(0,-3),∴设二次函数解析式为,将点(0,3)代入解析式得,∴;∴,即二次函数解析式为;(2)如图,根据二次函数与反比例函数在第一象限的图像可知,当时,有;当时,有,故两函数交点的横坐标落在1和2之间,从而得出这两个相邻的正整数为1与2.(3)根据函数图像性质可知:当时,对,随着的增大而增大,对,随着的增大而减小,∵点B为二次函数与反比例函数交点,∴当时,,即,解得,同理,当时,,即,解得,∴的取值范围为;【点睛】本题主要考查了二次函数和反比例函数综合应用,掌握二次函数,反比例函数是解题的关键.21、A,B间的距离为(20+20)海里.【分析】过点C作CD⊥AB于点D,根据题意可得,∠ACD=60°,∠BCD=45°,BC=20×2=40,然后根据锐角三角函数即可求出A,B间的距离.【详解】解:如图,过点C作CD⊥AB于点D,根据题意可知:∠ACD=60°,∠BCD=45°,BC=20×2=40,∴在Rt△BCD中,CD=BD=BC=20,在Rt△ACD中,AD=CD•tan60°=20,∴AB=AD+BD=20+20(海里).答:A,B间的距离为(20+20)海里.【点睛】本题考查了解直角三角形的应用-方向角问题,解题的关键是掌握方向角的定义.22、(1)w=20x+1020;(2)费用最省方案为:购进A种树苗9棵,B种树苗8棵,所需费用为1200元.【分析】(1)根据题意可得等量关系:费用W=A种树苗a棵的费用+B种树苗(17−a)棵的费用可得函数关系式;(2)根据一次函数的性质与不等式的性质得到当x=9时,w有最小值.【详解】解:(1)w=80x+60(17-x)=20x+1020(2)∵k=20>0,w随着x的增大而增大又∵17-x<x,解得x>8.5,∴8.5<x<17,且x为整数∴当x=9时,w有最小值20×9+1020=1200(元)答:费用最省方案为:购进A种树苗9棵,B种树苗8棵,所需费用为1200元.【点睛】此题主要考查了一次函数和一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系与不等关系,列出函数关系式进行求解.23、(1);(2)见解析.【分析】(1)根据相似三角形的判定方法进行分析即可;(2)直接利用相似三角形的判定方法以及结合做一角等于已知角进而得出答案.【详解】(1)解:要使△APB∽△ABC成立,∠A是公共角,则,即,∴AP=.(2)解:作∠DEQ=∠F,如图点Q就是所求作的点【点睛】本题考查了相似变换,正确掌握相似三角形的判定方法是解题的关键.24、(1)CM=EM,CM⊥EM;(2)成立,理由见解析;(3)成立,理由见解析.【分析】(1)延长EM交AD于H,证明△FME≌△AMH,得到HM=EM,根据等腰直角三角形的性质可得结论;(2)根据正方形的性质得到点A、E、C在同一条直线上,根据直角三角形斜边上的中线是斜边的一半证明即可;(3)根据题意画出完整的图形,根据平行线分线段成比例定理、等腰三角形的性质证明即可.【详解】解:(1)如图1,结论:CM=EM,CM⊥EM.理由:∵AD∥EF,AD∥BC,∴BC∥EF,∴∠EFM=∠HBM,在△FME和△BMH中,,∴△FME≌△BMH,∴HM=EM,EF=BH,∵CD=BC,∴CE=CH,∵∠HCE=90°,HM=EM,∴CM=ME,CM⊥EM.(2)如图2,连接AE,∵四边形ABCD和四边形EDGF是正方形,∴∠FDE=45°,∠CBD=45°,∴点B、E、D在同一条直线上,∵∠BCF=90°,∠BEF=90°,M为AF的中点,∴CM=AF,EM=AF,∴CM=ME,∵∠EFD=45°,∴∠EFC=135°,∵CM=FM=ME,∴∠MCF=∠MFC,∠MFE=∠MEF,∴∠MCF+∠MEF=135°,∴∠CME=360°-135°-135°=90°,∴CM⊥ME.(3)如图3,连接CF,MG,作MN⊥CD于N,在△EDM和△GDM中,,∴△EDM≌△GDM,∴ME=MG,∠MED=∠MGD,∵M为BF的中点,FG∥MN∥BC,∴GN=NC,又MN⊥CD,∴MC=MG,∴MD=ME,∠MCG=∠MGC,∵∠MGC+∠MGD=180°,∴∠MCG+∠MED=180°,∴∠CME+∠CDE=180°,∵∠CDE=90°,∴∠CME=90°,∴(1)中的结论成立.【点睛】本题考查的是正方形的性质、全等三角形的判定定理和性质定理以及直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高职学前教育应用技术基础(教育应用)试题及答案
- 2025年中职口腔医学技术(义齿修复工艺)试题及答案
- 2026年农村教育(教育模式)试题及答案
- 2025年大学认证认可管理(认证认可管理)试题及答案
- 2025年大学历史教育(历史教学方法)试题及答案
- 2025年中职林业生产技术(苗木培育)试题及答案
- 2025年中职(城市轨道交通运营管理)地铁票务管理专项测试试题及答案
- 2026年汉堡食品加工机维修(加工机调试技术)试题及答案
- 2025年中职药物化学(药物化学基础)试题及答案
- 2025年中职(铁道运输服务)列车乘务服务试题及答案
- 广东高校毕业生“三支一扶”计划招募考试真题2024
- 胶带机硫化工艺.课件
- 种鸡免疫工作总结
- 河南省商丘市柘城县2024-2025学年八年级上学期期末数学试题(含答案)
- 河南省信阳市2024-2025学年高二上学期1月期末英语试题(含答案无听力原文及音频)
- 给女朋友申请书
- 八下《桃花源记》《小石潭记》全文背诵(原文+译文)
- 【8地RJ期末】安徽省芜湖市2024-2025学年八年级上学期期末考试地理试卷+
- 智能法理学习通超星期末考试答案章节答案2024年
- 长护险护理培训课件
- 福建省厦门市2023-2024学年高二上学期期末考试英语试题(解析版)
评论
0/150
提交评论