版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省四平市名校2025届数学八上期末综合测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图所示.在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的中垂线,E、N在BC上,则∠EAN=()A.58° B.32° C.36° D.34°2.下面各组数据中是勾股数的是()A.0.3,0.4,0.5 B.5,12,13C.1,4,9 D.5,11,123.多项式与多项式的公因式是()A. B. C. D.4.一个长方形的面积是,且长为,则这个长方形的宽为()A. B. C. D.5.化简|-|的结果是()A.- B. C. D.6.函数的图象如图所示,则函数的大致图象是()A. B. C. D.7.如图,,交于点,,,则的度数为().A. B. C. D.8.如图,在中,,的中垂线交、于点、,的周长是8,,则的周长是()A.10 B.11 C.12 D.139.如图,△ABC中,AC=BC,AC的垂直平分线分别交AC,BC于点E,F.点D为AB边的中点,点M为EF上一动点,若AB=4,△ABC的面积是16,则△ADM周长的最小值为()A.20 B.16 C.12 D.1010.如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是()A.AD=AE B.DB=AE C.DF=EF D.DB=EC二、填空题(每小题3分,共24分)11.如图,点P是∠BAC的平分线AD上一点,PE⊥AC于点E.已知PE=3,则点P到AB的距离是_____12.计算:_______.13.小明从家跑步到学校,接着马上原路步行回家.如图所示为小明离家的路程与时间的图像,则小明回家的速度是每分钟步行________m.14.如图,有一张长方形纸片,,.先将长方形纸片折叠,使边落在边上,点落在点处,折痕为;再将沿翻折,与相交于点,则的长为___________.15.如图,是等边三角形,AB=6,AD是BC边上的中线.点E在AC边上,且,则ED的长为____________.16.已知,求=___________.17.在△ABC中,∠A=60°,∠B=∠C,则∠B=______.18.若点P(2−a,2a+5)到两坐标轴的距离相等,则a的值为____.三、解答题(共66分)19.(10分)如图,已知直线与直线AC交于点A,与轴交于点B,且直线AC过点和点,连接BD.(1)求直线AC的解析式.(2)求交点A的坐标,并求出的面积.(3)在x轴上是否存在一点P,使得周长最小?若存在,求出点P的坐标;若不存在,请说明理由.20.(6分)勾股定理是初中数学学习的重要定理之一,这个定理的验证方法有很多,你能验证它吗?请你根据所给图形选择一种方法,画出验证勾股定理的方法,并写出验证过程.21.(6分)在如图所示的方格纸中,每个方格都是边长为1个单位的小正方形,的三个顶点都在格点上(每个小正方形的顶点叫做格点).(1)画出关于直线l对称的图形.(2)画出关于点O中心对称的图形,并标出的对称点.(3)求出线段的长度,写出过程.22.(8分)九(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲、乙两组,进行力四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘制成如图统计图.根据统计图,解答下列问题:(1)第三次成绩的优秀率是多少?并将条形统计图补充完整;(2)已求得甲组成绩优秀人数的平均数,方差,请通过计算说明,哪一组成绩优秀的人数比较稳定?23.(8分)如图,点在线段上,,,,平分,交于点,求证:.24.(8分)如图,△ABC中,∠A=60°,P为AB上一点,Q为BC延长线上一点,且PA=CQ,过点P作PM⊥AC于点M,过点Q作QN⊥AC交AC的延长线于点N,且PM=QN,连PQ交AC边于D.求证:(1)△ABC为等边三角形;(2)DM=AC.25.(10分)已知为原点,点及在第一象限的动点,且,设的面积为.(1)求关于的函数解析式;(2)求的取值范围;(3)当时,求点坐标;(4)画出函数的图象.26.(10分)如图,在平面直角坐标系中,直线与轴和轴分别交于点和点,与直线相交于点,,动点在线段和射线上运动.(1)求点和点的坐标.(2)求的面积.(3)是否存在点,使的面积是的面积的?若存在,求出此时点的坐标,若不存在,说明理由.
参考答案一、选择题(每小题3分,共30分)1、B【分析】先由∠BAC=106°及三角形内角和定理求出∠B+∠C的度数,再根据线段垂直平分线的性质求出∠B=∠BAE,∠C=∠CAN,即∠B+∠C=∠BAE+∠CAN,由∠EAN=∠BAC-(∠BAE+∠CAN)解答即可.【详解】∵△ABC中,∠BAC=106°,∴∠B+∠C=180°-∠BAC=180°-106°=74°,∵EF、MN分别是AB、AC的中垂线,∴∠B=∠BAE,∠C=∠CAN,即∠B+∠C=∠BAE+∠CAN=74°,∴∠EAN=∠BAC-(∠BAE+∠CAN)=106°-74°=32°.故选B.【点睛】本题考查的是线段垂直平分线的性质及三角形内角和定理,能根据三角形内角和定理求出∠B+∠C=∠BAE+∠CAN=74°是解答此题的关键.2、B【解析】根据勾股数的定义进行解答即可.【详解】A、∵0.3,0.4,0.5是小数,∴不是勾股数,故本选项错误;B、∵52+122=169=132,∴是勾股数,故本选项正确;C、∵12+42≠92,∴不是勾股数,故本选项错误;D、∵52+112≠122,∴不是勾股数,故本选项错误.故选:B.【点睛】本题考查勾股数,解题的关键是掌握勾股数的定义.3、A【解析】试题分析:把多项式分别进行因式分解,多项式=m(x+1)(x-1),多项式=,因此可以求得它们的公因式为(x-1).故选A考点:因式分解4、A【分析】根据长方形的宽=长方形的面积÷长方形的长即可列出算式,再根据多项式除以单项式的法则计算即可.【详解】解:这个长方形的宽=.故选:A.【点睛】本题考查了多项式除以单项式的实际应用,属于基础题型,正确理解题意、熟练掌握运算法则是解题的关键.5、C【解析】根据绝对值的性质化简|-|即可.【详解】|-|=故答案为:C.【点睛】本题考查了无理数的混合运算,掌握无理数的混合运算法则、绝对值的性质是解题的关键.6、B【分析】根据一次函数的图象的性质确定a和b的符号,进而解答即可.【详解】解:由函数y=ax+b-2的图象可得:a<0,b-2=0,
∴a<0,b=2>0,
所以函数y=-ax-b的大致图象经过第一、四、三象限,
故选:B.【点睛】本题考查了一次函数的性质,关键是根据一次函数的图象的性质确定a和b的符号.7、A【分析】由和,可得到;再由对顶角相等和三角形内角和性质,从而完成求解.【详解】∵∴∴∴故选:A.【点睛】本题考察了平行线和三角形内角和的知识;求解的关键是熟练掌握三角形内角和、平行线的性质,从而完成求解.8、C【分析】根据DE是AB的中垂线,可得AE=BE,再根据的周长可得BC+AC的值,最后计算的周长即可.【详解】解:∵DE是AB的中垂线,,∴AB=2AD=4,AE=BE,又∵的周长是8,即BC+BE+CE=8∴BC+AE+CE=BC+AC=8,∴的周长=BC+AC+AB=8+4=12,故答案为:C.【点睛】本题考查了垂直平分线的性质,掌握垂直平分线的概念及性质是解题的关键.9、D【分析】连接CD,CM,由于△ABC是等腰三角形,点D是BA边的中点,故CD⊥BA,再根据三角形的面积公式求出CD的长,再再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为点C,故CD的长为AM+MD的最小值,由此即可得出结论.【详解】解:连接CD,CM.∵△ABC是等腰三角形,点D是BA边的中点,∴CD⊥BA,∴S△ABC=BA•CD=×4×CD=16,解得CD=8,∵EF是线段AC的垂直平分线,∴点A关于直线EF的对称点为点C,∴MA=MC,∵CD≤CM+MD,∴CD的长为AM+MD的最小值,∴△ADM的周长最短=(AM+MD)+AD=CD+BA=8+×4=8+2=1.故选:D.【点睛】本题考查的是轴对称−最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.10、B【解析】试题解析:∵△ABE≌△ACD,∴AB=AC,AD=AE,∠B=∠C,故A正确;∴AB-AD=AC-AE,即BD=EC,故D正确;在△BDF和△CEF中∴△BDF≌△CEF(ASA),∴DF=EF,故C正确;故选B.二、填空题(每小题3分,共24分)11、1【分析】根据角平分线的性质可得,点P到AB的距离=PE=1.【详解】解:∵P是∠BAC的平分线AD上一点,PE⊥AC于点E,PE=1,
∴点P到AB的距离=PE=1.
故答案为:1.【点睛】本题主要考查角平分线的性质:角的平分线上的点到角的两边的距离相等.12、a3【分析】根据同底数幂的除法法则进行计算即可得到答案.【详解】.故答案为a3.【点睛】本题考查了同底数幂的除法,熟练掌握运算法则是解题的关键.13、1【分析】先分析出小明家距学校10米,小明从学校步行回家的时间是15-5=10(分),再根据路程、时间、速度的关系即可求得.【详解】解:通过读图可知:小明家距学校10米,小明从学校步行回家的时间是15-5=10(分),
所以小明回家的速度是每分钟步行10÷10=1(米).
故答案为:1.【点睛】本题主要考查了函数图象,先得出小明家与学校的距离和回家所需要的时间,再求解.14、【解析】根据折叠的性质可得∠DAF=∠BAF=45°,再由矩形性质可得FC=ED=1,然后由勾股定理求出FG即可.【详解】由折叠的性质可知,∠DAF=∠BAF=45°,∴AE=AD=3,EB=AB-AD=1,∵四边形EFCB为矩形,∴FC=BE=1,∵AB∥FC,∴∠GFC=∠DAF=45°,∴GC=FC=1,∴,故答案为:.【点睛】本题考查了折叠变换,矩形的性质是一种对称变换,理解折叠前后图形的大小不变,位置变化,对应边和对应角相等是解决此题的关键.15、1【分析】根据题意易得,BD=DC,,从而得到,所以得到AE=ED,再根据直角三角形斜边中线定理得AE=EC,由三角形中位线得出答案.【详解】是等边三角形,AD是BC边上的中线,,BD=DCAE=EDED=ECDE=AE=EC故答案为1.【点睛】本题主要考查了等边三角形的性质、直角三角形斜边中线及三角形中位线,关键是根据等边三角形的性质得到角的度数,进而得到边的等量关系,最后利用三角形中位线得到答案.16、.【解析】已知等式整理得:,即则原式故答案为17、60°【分析】根据条件由三角形内角和可得∠A+∠B+∠C=180°;接下来根据∠A=60°,∠B=∠C,进而得到∠B的度数.【详解】解:∵∠A、∠B、∠C是△ABC的三个内角,∴∠A+∠B+∠C=180°.∵∠A=60°,∠B=∠C,∴∠B=60°,故答案为:60°.【点睛】本题主要考查了三角形内角和定理的运用,解题时注意三角形内角和等于180°.18、a=-1或a=-1.【分析】由点P到两坐标轴的距离相等可得出|2-a|=|2a+5|,求出a的值即可.【详解】解:∵点P到两坐标轴的距离相等,
∴|2-a|=|2a+5|,
∴2-a=2a+5,2-a=-(2a+5)
∴a=-1或a=-1.故答案是:a=-1或a=-1.【点睛】本题考查了点到坐标轴的距离与坐标的关系,解答本题的关键在于得出|2-a|=|2a+5|,注意不要漏解.三、解答题(共66分)19、(1);(2),;(3)存在点P使周长最小.【分析】(1)设直线AC解析式,代入,,用待定系数法解题即可;(2)将直线与直线AC两个解析式联立成方程组,转化成解二元一次方程组,再结合三角形面积公式解题;(3)作D、E关于轴对称,利用轴对称性质、两点之间线段最短解决最短路径问题,再用待定系数法解直线AE的解析式,进而令,解得直线与x轴的交点即可.【详解】(1)设直线AC解析式,把,代入中,得,解得,直线AC解析式.(2)联立,解得.,把代入中,得,,,,,,.故答案为:,.(3)作D、E关于轴对称,,周长,是定值,最小时,周长最小,,A、P、B共线时,最小,即最小,连接AE交轴于点P,点P即所求,,D、E关于轴对称,,设直线AE解析式,把,代入中,,解得,,令得,,,即存在点P使周长最小.【点睛】本题考查一次函数、二元一次方程组、轴对称最短路径问题、与x轴交点等知识,是重要考点,难度较易,掌握相关知识是解题关键.20、见解析【分析】根据勾股定理的定义及几何图形的面积法进行证明即可得解.【详解】如下图,根据几何图形的面积可知:整理得:.【点睛】本题主要考查了勾股定理的推到,熟练掌握面积法推到勾股定理是解决本题的关键.21、(1)详见解析;(2)详见解析;(3)【分析】(1)根据网格结构找出点A、B、C关于直线l的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C关于点O中心对称的点A2、B2、C2的位置,然后顺次连接即可;(3)利用勾股定理列式计算即可得解.【详解】(1)如图:(2)如图:(3)过点M竖直向下作射线,过点M'水平向左作射线,两条线相交于点N,可知∠MNM'是直角,在RtΔMNM'中,由勾股定理得MN2+NM'2=MM'2,因为MN=2,M'N=5,所以MM'=【点睛】本题考查了利用轴对称变换作图,利用旋转变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.22、(1),图见解析;(2)甲组成绩优秀的人数较稳定【分析】(1)结合两个统计图,先求出总人数,然后即可得出第三次的优秀率和第四次乙组的优秀人数;(2)求出乙组的平均数和方差,与甲组比较即可.【详解】(1)总人数:(人),第三次的优秀率:第四次乙组的优秀人数为:(人)补全条形统计图,如图所示:(2),,所以甲组成绩优秀的人数较稳定.【点睛】此题主要考查统计图的相关知识以及平均数、方差的求解,熟练掌握,即可解题.23、见解析【分析】根据平行线性质得出∠A=∠B,根据SAS证△ACD≌△BEC,推出DC=CE,根据等腰三角形的三线合一定理推出即可.【详解】证明:∵AD∥BE∴∠A=∠B在△ACD和△BEC中∴△ACD≌△BEC(SAS)∴DC=CE又∵CF平分∠DCE∴EF=DF(三线合一)【点睛】本题考查了全等三角形的性质和判定,平行线的性质,等腰三角形的性质等知识点,关键是求出DC=CE,主要考查了学生运用定理进行推理的能力.24、(1)见解析;(2)见解析【分析】(1)由“HL”可证,可得,从而可得结论;(2)先由(1)可知,再由AAS可证,从而由三角形全等的性质可得,然后由线段的和差即可得证.【详解】证明:(1),且为等边三角形;(2)由(1)已证:又,即.【点睛】本题考查了等边三角形的判定、三角形全等的判定定理与性质等知识点,熟记并灵活运用三角形全等的判定定理是解题关键.25、(1)S=−4x+48;(2)0<x<12;(3)P(1,3);(4)见解析.【分析】(1)根据三角形的面积公式即可得出结论;(2)根据(1)中函数关系式及点P在第一象限即可得出结论;(3)把S=12代
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山东省枣庄滕州市2025-2026学年上学期期末七年级生物试卷(含答案)
- 化工医药设备管理培训课件
- 2025-2026学年河南省南阳市六校联考高三(上)期末数学试卷(含答案)
- 2026年上海市浦东新区初三上学期一模数学试卷和参考答案
- 钢结构项目管理技术要领
- 特种作业人员管理制度
- 飞机的科普教学课件
- 市政工程公司数据管理制度
- 2026年河南投资集团招聘部分管理人员10人备考考试题库及答案解析
- 2026广西梧州市招聘中小学(幼儿园)教师260人考试参考题库及答案解析
- 售电公司年终总结
- DB41∕T 2087-2021 河南省黄河流域水污染物排放标准
- 市政工程养护管理方案汇编
- 房地产项目供应链标准化流程管理
- 具身智能+老年人认知障碍早期识别方案可行性报告
- 急诊PDCA课件教学课件
- (2021-2025)5年高考1年模拟物理真题分类汇编专题04 机械能守恒、动量守恒及功能关系(广东专用)(解析版)
- 2025-2030手术机器人医生培训体系构建与医院采购决策影响因素报告
- 乳糜胸护理新进展
- 社区护理中的青少年保健
- 手术室胆囊结石护理查房
评论
0/150
提交评论