广东深圳龙文教育2025届高二上数学期末综合测试模拟试题含解析_第1页
广东深圳龙文教育2025届高二上数学期末综合测试模拟试题含解析_第2页
广东深圳龙文教育2025届高二上数学期末综合测试模拟试题含解析_第3页
广东深圳龙文教育2025届高二上数学期末综合测试模拟试题含解析_第4页
广东深圳龙文教育2025届高二上数学期末综合测试模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东深圳龙文教育2025届高二上数学期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是虚数单位,则复数在复平面内对应的点位于()A.第一象限 B.第二象限C.第三象限 D.第四象限2.在空间直角坐标系中,方程所表示的图形是()A圆 B.椭圆C.双曲线 D.球3.在圆内,过点的最长弦和最短弦分别是AC和BD,则四边形ABCD的面积为()A. B.C. D.4.若函数在定义域上单调递增,则实数的取值范围为()A. B.C. D.5.在如图所示的棱长为1的正方体中,点P在侧面所在的平面上运动,则下列四个命题中真命题的个数是()①若点P总满足,则动点P的轨迹是一条直线②若点P到点A的距离为,则动点P的轨迹是一个周长为的圆③若点P到直线AB的距离与到点C的距离之和为1,则动点P的轨迹是椭圆④若点P到平面的距离与到直线CD的距离相等,则动点P的轨迹是抛物线A.1 B.2C.3 D.46.执行如图所示的程序框图,则输出的的值是()A. B.C. D.7.杨辉三角是二项式系数在三角形中的一种几何排列,在中国南宋数学家杨辉1261年所著的《详解九章算法》一书中就有出现.在欧洲,帕斯卡(1623~1662)在1654年发现这一规律,比杨辉要迟了393年.如图所示,在“杨辉三角”中,从1开始箭头所指的数组成一个锯齿形数列:1,2,3,3,6,4,10,5,…,则在该数列中,第37项是A.153 B.171C.190 D.2108.现有4本不同的书全部分给甲、乙、丙3人,每人至少一本,则不同的分法有()A.12种 B.24种C.36种 D.48种9.在中,若,则()A.150° B.120°C.60° D.30°10.若函数在上有且仅有一个极值点,则实数的取值范围为()A. B.C. D.11.设命题,,则为()A., B.,C., D.,12.已知椭圆的左右焦点分别为,,点B为短轴的一个端点,则的周长为()A.20 B.18C.16 D.9二、填空题:本题共4小题,每小题5分,共20分。13.已知等差数列的前n项和为,,则___________.14.从10名大学毕业生中选3个人担任村主任助理,则甲、乙至少有1人入选,而丙没有入选不同选法的种数为___________.15.几位大学生响应国家创业号召,开发了一款面向中学生的应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”活动.这款软件的激活码为下面数学题的答案:记集合…,…,例如:,,若将集合的各个元素之和设为该软件的激活码,则该激活码应为________.16.如果点在运动过程中,总满足关系式,记满足此条件的点M的轨迹为C,直线与C交于D,E,已知,则周长的最大值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点为抛物线的焦点,点在抛物线上,的面积为1.(1)求抛物线的标准方程;(2)设点是抛物线上异于点的一点,直线与直线交于点,过作轴的垂线交抛物线于点,求证:直线过定点.18.(12分)如图所示,四棱锥的底面为直角梯形,,,,,底面,为的中点(1)求证:平面平面;(2)求点到平面的距离19.(12分)如图,已知顶点,,动点分别在轴,轴上移动,延长至点,使得,且.(1)求动点的轨迹;(2)过点分别作直线交曲线于两点,若直线的倾斜角互补,证明:直线的斜率为定值;(3)过点分别作直线交曲线于两点,若,直线是否经过定点?若是,求出该定点,若不是,说明理由.20.(12分)已知椭圆的离心率是,且过点.(1)求椭圆的标准方程;(2)若直线与椭圆交于A、B两点,线段的中点为,为坐标原点,且,求面积的最大值.21.(12分)如图所示,在三棱柱中,,点在平面ABC上的射影为线段AC的中点D,侧面是边长为2的菱形(1)若△ABC是正三角形,求异面直线与BC所成角的余弦值;(2)当直线与平面所成角的正弦值为时,求线段BD的长22.(10分)如图,五边形为东京奥运会公路自行车比赛赛道平面设计图,根据比赛需要,在赛道设计时需预留出,两条服务通道(不考虑宽度),,,,,为赛道.现已知,,千米,千米(1)求服务通道的长(2)在上述条件下,如何设计才能使折线赛道(即)的长度最大,并求最大值

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据复数的几何意义即可确定复数所在象限【详解】复数在复平面内对应的点为则复数在复平面内对应的点位于第四象限故选:D2、D【解析】方程表示空间中的点到坐标原点的距离为2,从而可知图形的形状【详解】由,得,表示空间中的点到坐标原点的距离为2,所以方程所表示的图形是以原点为球心,2为半径的球,故选:D3、D【解析】由题,求得圆的圆心和半径,易知最长弦,最短弦为过点与垂直的弦,再求得BD的长,可得面积.【详解】圆化简为可得圆心为易知过点的最长弦为直径,即而最短弦为过与垂直的弦,圆心到的距离:所以弦所以四边形ABCD的面积:故选:D4、D【解析】函数在定义域上单调递增等价于在上恒成立,即在上恒成立,然后易得,最后求出范围即可.【详解】函数的定义域为,,在定义域上单调递增等价于在上恒成立,即在上恒成立,即在上恒成立,分离参数得,所以,即.【点睛】方法点睛:已知函数的单调性求参数的取值范围的通解:若在区间上单调递增,则在区间上恒成立;若在区间上单调递减,则在区间上恒成立;然后再利用分离参数求得参数的取值范围即可.5、C【解析】根据线面关系、距离关系可分别对每一个命题判断.【详解】若点P总满足,又,,,可得对角面,因此点P的轨迹是直线,故①正确若点P到点A的距离为,则动点P的轨迹是以点B为圆心,以1为半径的圆(在平面内),因此圆的周长为,故②正确点P到直线AB的距离PB与到点C的距离PC之和为1,又,则动点P的轨迹是线段BC,因此③不正确点P到平面的距离(即到直线的距离)与到直线CD的距离(即到点C的距离)相等,则动点P的轨迹是以线段BC的中点为顶点,直线BC为对称轴的抛物线(在平面内),因此④正确故有①②④三个故选:C6、C【解析】由题意确定流程图的功能,然后计算其输出值即可.【详解】运行程序,不满足,,,不满足,,,不满足,,,不满足,,,不满足,,,不满足,,,满足,利用裂项求和可得:.故选:C.【点睛】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构(2)要识别、运行程序框图,理解框图所解决的实际问题(3)按照题目的要求完成解答并验证7、C【解析】根据“杨辉三角”找出数列1,2,3,3,6,4,10,5,…之间的关系即可。【详解】由题意可得从第3行起的每行第三个数:,所以第行的第三个数为在该数列中,第37项为第21行第三个数,所以该数列的第37项为故选:C【点睛】本题主要考查了归纳、推理的能力,属于中等题。8、C【解析】先把4本书按2,1,1分为3组,再全排列求解.【详解】先把4本书按2,1,1分为3组,再全排列,则有种分法,故选:C9、C【解析】根据正弦定理将化为边之间的关系,再结合余弦定理可得答案.【详解】若,则根据正弦定理得:,即,而,故,故选:C.10、C【解析】根据极值点的意义,可知函数的导函数在上有且仅有一个零点.结合零点存在定理,即可求得的取值范围.【详解】函数则因为函数在上有且仅有一个极值点即在上有且仅有一个零点根据函数零点存在定理可知满足即可代入可得解得故选:C【点睛】本题考查了函数极值点的意义,函数零点存在定理的应用,属于中档题.11、B【解析】全称命题的否定时特称命题,把任意改为存在,把结论否定.【详解】命题,,则为“,”.故选:B12、B【解析】根据椭圆的定义求解【详解】由椭圆方程知,所以,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、36【解析】根据等比数列下标和性质得到,再根据等差数列前项和公式计算可得;【详解】解:因,所以,所以;故答案为:14、49【解析】丙没有入选,相当于从9个人中选3人,分为两种情况:甲乙两人只有一人入选;甲乙两人都入选,分别求出每种情况的选法数,再利用分类加法计数原理即可得解.【详解】丙没有入选,把丙去掉,相当于从9个人中选3人,甲、乙至少有1人入选,分为两种情况:甲乙两人只有一人入选;甲乙两人都入选.甲乙两人只有一人入选,选法有种;甲乙两人都入选,选法有种.所以,满足题意的选法共有种.故答案为:49.【点睛】本题考查组合的应用,其中涉及到分类加法计数原理,属于中档题.一些常见类型的排列组合问题的解法:(1)特殊元素、特殊位置优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;(2)分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏;(3)间接法(排除法),从总体中排除不符合条件的方法数,这是一种间接解题的方法;(4)捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列,然后再给那“一捆元素”内部排列;(5)插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空;(6)去序法或倍缩法;(7)插板法:个相同元素,分成组,每组至少一个的分组问题.把个元素排成一排,从个空中选个空,各插一个隔板,有;(8)分组、分配法:有等分、不等分、部分等分之别.15、376【解析】由题设知集合的规律为最小的元素为且元素构成公差1的等差数列,共有个元素,即可写出的所有元素,应用等差数列前n项和公式求激活码.【详解】由题设,或,即,或,即,所以或,则,故各个元素之和为.故答案为:.16、8【解析】根据椭圆定义判断出轨迹,分析条件结合椭圆定义可知当直线x=m过右焦点时,三角形ADE周长最大.【详解】,到定点,的距离和等于常数,点轨迹C为椭圆,且故其方程为,则为左焦点,因为直线与C交于D,E,则,不妨设D在轴上方,E在轴下方,设椭圆右焦点为A',连接DA',EA',因为DA'+EA'≥DE,所以DA+EA+DA'+EA'≥DA+EA+DE,即4a≥DA+EA+DE,所以△ADE的周长,当时取得最大值8,故答案为:8三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】(1)由条件列方程求,由此可得抛物线方程;(2)方法一:联立直线与抛物线方程,结合条件三点共线,可证明直线过定点,方法二:联立直线与抛物线方程,联立直线与直线求,由垂直与轴列方程化简,可证明直线过定点.【小问1详解】因为点在抛物线上,所以,即,,因为,故解得,抛物线的标准方程为【小问2详解】设直线的方程为,由,得,所以,由(1)可知当时,,此时直线的方程为,若时,因为三点共线,所以,即,又因为,,化简可得,又,进而可得,整理得,因为所以,此时直线的方程为,直线恒过定点又直线也过点,综上:直线过定点解法二:设方程,得若直线斜率存在时斜率方程为即解得:,于是有整理得.(*)代入上式可得所以直线方程为直线过定点.若直线斜率不存在时,直线方程为所以P点坐标为,M点坐标为此时直线方程为过点综上:直线过定点.【点睛】解决直线与抛物线的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、抛物线的条件;(2)强化有关直线与抛物线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题18、(1)证明见解析(2)【解析】(1)设与交点为,延长交的延长线于点,进而根据证明,再结合底面得,进而证明平面即可证明结论;(2)由得点到平面的距离等于点到平面的距离的,进而过作,垂足为,结合(1)得点到平面的距离等于,再在中根据等面积法求解即可.【小问1详解】证明:设与交点为,延长交的延长线于点,因为四棱锥的底面为直角梯形,,所以,所以,因为为的中点,所以,因为所以,所以,所以,所以,又因为,所以,又因为,所以,所以,所以又因为底面,所以,因为,所以平面,因为平面,所以平面平面【小问2详解】解:由于,所以,点到平面的距离等于点到平面的距离的,因为平面平面,平面平面故过作,垂足为,所以,平面,所以点到平面的距离等于在中,,所以,点到平面的距离等于.19、(1);(2)证明见解析;(3).【解析】(1)设点M,P,Q的坐标,将向量进行坐标化,整理即可得轨迹方程;(2)设点,,直线的倾斜角互补,则两直线斜率互为相反数,用斜率公式计算得到,即可计算kAB;(3)若,由两直线斜率积为-1,可得到关于与的等量关系,写出直线AB的方程,将等量关系代入直线方程整理可得直线AB经过的定点【详解】(1)设,,.由,得,即.因为,所以,所以.所以动点的轨迹为抛物线,其方程为.(2)证明:设点,,若直线的倾斜角互补,则两直线斜率互为相反数,又,,所以,,整理得,所以.(3)因为,所以,即,①直线的方程为:,整理得:,②将①代入②得,即,当时,即直线经过定点.【点睛】本题考查直接法求轨迹方程,考查直线斜率为定值的求法和直线恒过定点问题.20、(1);(2)2.【解析】(1)根据已知条件列出关于a、b、c的方程组即可求得椭圆标准方程;(2)直线l和x轴垂直时,根据已知条件求出此时△AOB面积;直线l和x轴不垂直时,设直线方程为点斜式y=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论