




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省合肥市六校联考2025届高一数学第一学期期末调研试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数为R上的偶函数,若对于时,都有,且当时,,则等于()A.1 B.-1C. D.2.已知a>0,那么2+3a+4A.23 B.C.2+23 D.3.函数的图象大致是()A. B.C. D.4.已知,,则的值约为(精确到)()A. B.C. D.5.设,则下列不等式中不成立的是()A. B.C. D.6.已知,则的最大值为()A. B.C.0 D.27.设m,n是两条不同直线,,是两个不同的平面,下列命题正确的是A.,且,则B.,,,,则C.,,,则D.,且,则8.已知角α的终边经过点,则()A. B.C. D.9.已知函数的最大值与最小值的差为2,则()A.4 B.3C.2 D.10.命题“,是4倍数”的否定为()A.,是4的倍数 B.,不是4的倍数C.,不是4倍数 D.,不是4的倍数二、填空题:本大题共6小题,每小题5分,共30分。11.已知幂函数的图象过点,则________12.若,则___________;13.如图,直四棱柱的底面是边长为1的正方形,侧棱长,则异面直线与的夹角大小等于______14.已知集合A={﹣1,2,3},f:x→2x是集合A到集合B的映射,则写出一个满足条件的集合B_____15.已知幂函数(为常数)的图像经过点,则__________16.若函数y=f(x)是函数y=2x的反函数,则f(2)=______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设为定义在R上的偶函数,当时,;当时,,直线与抛物线的一个交点为,如图所示.(1)补全的图像,写出的递增区间(不需要证明);(2)根据图象写出不等式的解集18.已知线段的端点的坐标为,端点在圆上运动.(1)求线段中点的轨迹的方程;(2)若一光线从点射出,经轴反射后,与轨迹相切,求反射光线所在的直线方程.19.如图,在三棱锥中,底面,,,分别是,的中点.(1)求证:平面;(2)求证:.20.已知向量m=(cos,sin),n=(2+sinx,2-cos),函数=m·n,x∈R.(1)求函数的最大值;(2)若且=1,求的值.21.已知,且(1)求的值;(2)求的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由已知确定函数的递推式,利用递推式与奇偶性计算即可【详解】当时,,则,所以当时,,所以又是偶函数,,所以故选:A2、D【解析】利用基本不等式求解.【详解】因为a>0,所以2+3a+4当且仅当3a=4a,即故选:D3、B【解析】根据函数的奇偶性和正负性,运用排除法进行判断即可.【详解】因为,所以函数是偶函数,其图象关于纵轴对称,故排除C、D两个选项;显然,故排除A,故选:B4、B【解析】利用对数的运算性质将化为和的形式,代入和的值即可得解.【详解】.故选:B5、B【解析】对于A,C,D利用不等式的性质分析即可,对于B举反例即可【详解】对于A,因为,所以,所以,即,所以A成立;对于B,若,,则,,此时,所以B不成立;对于C,因为,所以,所以C成立;对于D,因为,所以,则,所以D成立,故选:B.【点睛】本题考查不等式的性质的应用,属于基础题.6、C【解析】把所求代数式变形,转化成,再对其中部分以基本不等式求最值即可解决.【详解】时,(当且仅当时等号成立)则,即的最大值为0.故选:C7、D【解析】对每一个命题逐一判断得解.【详解】对于A,若m∥α,n∥β且α∥β,说明m、n是分别在平行平面内的直线,它们的位置关系应该是平行或异面或相交,故A不正确;对于B,若“m⊂α,n⊂α,m∥β,n∥β”,则“α∥β”也可能α∩β=l,所以B不成立对于C,根据面面垂直的性质,可知m⊥α,n⊂β,m⊥n,∴n∥α,∴α∥β也可能α∩β=l,也可能α⊥β,故C不正确;对于D,由m⊥α,n⊥β且α⊥β,则m与n一定不平行,否则有α∥β,与已知α⊥β矛盾,通过平移使得m与n相交,且设m与n确定的平面为γ,则γ与α和β的交线所成的角即为α与β所成的角,因为α⊥β,所以m与n所成的角为90°,故命题D正确故答案为D【点睛】本题考查直线与平面平行与垂直,面面垂直的性质和判断的应用,考查逻辑推理能力和空间想象能力.8、D【解析】推导出,,,再由,求出结果【详解】∵角的终边经过点,∴,,,∴故选:D9、C【解析】根据解析式可得其单调性,根据x的范围,可求得的最大值和最小值,根据题意,列出方程,即可求得a值.【详解】由题意得在上为单调递增函数,所以,,所以,解得,又,所以.故选:C10、B【解析】根据特称量词命题的否定是全称量词命题即可求解【详解】因为特称量词命题的否定是全称量词命题,所以命题“,是4的倍数”的否定为“,不是4的倍数”故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】先求得幂函数的解析式,再去求函数值即可.【详解】设幂函数,则,则,则,则故答案为:312、1【解析】根据函数解析式,从里到外计算即可得解.【详解】,所以.故答案为:113、【解析】由直四棱柱的底面是边长为1的正方形,侧棱长可得由知就是异面直线与的夹角,且所以=60°,即异面直线与的夹角大小等于60°.考点:1正四棱柱;2异面直线所成角14、{﹣2,4,6}【解析】先利用应关系f:x→2x,根据原像求像的值,像的值即是满足条件的集合B中元素【详解】∵对应关系为f:x→2x,={-1,2,3},∴2x=-2,4,6共3个值,则-2,4,6这三个元素一定在集合B中,根据映射的定义集合B中还可能有其他元素,我们可以取其中一个满足条件的集合B,不妨取集合B={-2,4,6}.故答案为:{-2,4,6}【点睛】本题考查映射的概念,像与原像的定义,集合A中所有元素的集合即为集合B中元素集合.15、3【解析】设,依题意有,故.16、1【解析】根据反函数的定义即可求解.【详解】由题知y=f(x)=,∴f(2)=1.故答案为:1.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)图像见解析,单调增区间,(2)【解析】(1)由偶函数的图象关于轴对称可补全图象,然后写出递增区间;(2)根据图象写出答案即可.【小问1详解】函数图象如图所示:观察可知的单调增区间为,【小问2详解】当时,,可得,即根据函数图象可得,当或时,所以的解集为18、(1)(2),【解析】(1)设,利用中点坐标公式,转化为的坐标,代入圆的方程求解即可(2)设关于轴对称点设过的直线,利用点到直线的距离公式化简求解即可【详解】设,则代入轨迹的方程为(2)设关于轴对称点设过的直线,即∵,,∴或∴反射光线所在即即19、(1)证明过程见解析;(2)证明过程见解析.【解析】(1)利用三角形中位线定理,结合线面平行的判定定理进行证明即可;(2)利用线面垂直的性质,结合线面垂直的判定定理进行证明即可.【详解】(1)因为,分别是,的中点,所以,又因为平面,平面,所以平面;(2)因为底面,底面,所以,又因为,,平面,所以平面,而平面,所以.20、(1)f(x)的最大值是4(2)-【解析】(1)先由向量的数量积坐标表示得到函数的三角函数解析式,再将其化简得到f(x)=4sin(x∈R),最大值易得;(2)若且=1,,解三角方程求出符合条件的x的三角函数值,再有余弦的和角公式求的值【详解】(1)因为f(x)=m·n=cosx(2+sinx)+sinx·(2-cosx)=2(sinx+cosx)=4sin(x∈R),所以f(x)的最大值是4.(2)因为f(x)=1,所以sin=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- MT/T 1223-2024露天煤矿排土场土地复垦作物种植技术规程
- 审计学试题及答案
- 软件设计师职业生涯规划试题及答案
- 网络工程师历年考题回顾试题及答案
- 关键问题2025年西方政治制度的可持续性试题及答案
- 公共政策实施中的多方利益平衡试题及答案
- 机电工程项目风险考试题
- 深化机电工程社会服务体系建设及试题与答案
- 市场导向的公共政策分析试题及答案
- 软件设计师考试技巧与经验试题及答案
- HY/T 0460.5-2024海岸带生态系统现状调查与评估技术导则第5部分:珊瑚礁
- 2025年中考历史押题模拟试卷(含答案)
- 《基于杜邦分析法的蔚来汽车财务报表分析》13000字(论文)
- 四川省绵阳市2025届高三下学期第三次诊断性测试数学试卷(含答案)
- 医疗临床试验患者筛选
- 2025年安徽宣城郎溪开创控股集团有限公司招聘笔试参考题库附带答案详解
- 中医针灸推拿操作规范
- 冷却塔维修施工方案及报价清单
- 物联网设备接入技术规范手册
- 余秋雨散文《西湖梦》
- 服务售后方案及保障措施
评论
0/150
提交评论