山东省滨州市博兴县第一中学2025届高一数学第一学期期末联考模拟试题含解析_第1页
山东省滨州市博兴县第一中学2025届高一数学第一学期期末联考模拟试题含解析_第2页
山东省滨州市博兴县第一中学2025届高一数学第一学期期末联考模拟试题含解析_第3页
山东省滨州市博兴县第一中学2025届高一数学第一学期期末联考模拟试题含解析_第4页
山东省滨州市博兴县第一中学2025届高一数学第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省滨州市博兴县第一中学2025届高一数学第一学期期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数图象中,不能用二分法求零点的是()A. B.C. D.2.在中,如果,则角A. B.C. D.3.若函数,则()A. B.C. D.4.已知直线、、与平面、,下列命题正确的是()A若,则 B.若,则C.若,则 D.若,则5.若,,则是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角6.半径为2,圆心角为的扇形的面积为()A. B.C. D.27.已知,则,,的大小关系为()A. B.C. D.8.已知,则的大小关系是()A. B.C. D.9.函数的零点所在区间为:()A. B.C. D.10.已知集合,,,则实数a的取值集合为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在国际气象界,二十四节气被誉为“中国的第五大发明”.一个回归年定义为从某年春分到次年春分所经历的时间,也指太阳直射点回归运动的一个周期.某科技小组以某年春分为初始时间,统计了连续400天太阳直射点的纬度平均值(太阳直射北半球时取正值,直射南半球时取负值).设第x天时太阳直射点的纬度平均值为y,该小组通过对数据的整理和分析,得到y与x近似满足,则一个回归年对应的天数约为______(精确到0.01);已知某年的春分日是星期六,则4个回归年后的春分日应该是星期______.()12.已知圆心角为2rad的扇形的周长为12,则该扇形的面积为____________.13.已知扇形的弧长为,且半径为,则扇形的面积是__________.14.已知函数为奇函数,则______15.已知甲、乙两组数据已整理成如图所示的茎叶图,则甲组数据的中位数是___________,乙组数据的25%分位数是___________16.各条棱长均相等的四面体相邻两个面所成角的余弦值为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求的定义域;(2)若角在第一象限且,求的值.18.设函数f(1)求函数fx(2)求函数fx(3)求函数fx在闭区间0,π219.已知集合A={x|x2-px+q=0},B={x|x2-x-6=0}(Ⅰ)若A∪B={-2,1,3},A∩B={3},用列举法表示集合A;(Ⅱ)若∅AB,且p+q>0,求p,q的值20.已知函数(1)求的解析式,并证明为R上的增函数;(2)当时,且的图象关于点对称.若,对,使得成立,求实数的取值范围21.已知函数,,(1)求函数的值域;(2)若对任意的,都有恒成立,求实数a的取值范围;(3)若对任意的,都存在四个不同的实数,,,,使得,其中,2,3,4,求实数a的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】利用二分法求函数零点所满足条件可得出合适的选项.【详解】观察图象与轴的交点,若交点附近的函数图象连续,且在交点两侧的函数值符号相异,则可用二分法求零点,故B不能用二分法求零点故选:B.2、C【解析】由特殊角的三角函数值结合在△ABC中,可求得A的值;【详解】,又∵A∈(0,π),∴故选C.【点睛】本题考查了特殊角的三角函数值及三角形中角的范围,属于基础题.3、C【解析】应用换元法求函数解析式即可.【详解】令,则,所以,即.故选:C4、D【解析】利用线线,线面,面面的位置关系,以及垂直,平行的判断和性质判断选项.【详解】A.若,则或异面,故A不正确;B.缺少垂直于交线这个条件,不能推出,故B不正确;C.由垂直关系可知,或相交,或是异面,故C不正确;D.因,所以平面内存在直线,若,则,且,所以,故D正确.故选:D5、B【解析】根据,可判断可能在的象限,根据,可判断可能在的象限,综合分析,即可得答案.【详解】由,可得的终边在第一象限或第二象限或与y轴正半轴重合,由,可得的终边在第二象限或第四象限,因为,同时成立,所以是第二象限角.故选:B6、D【解析】利用扇形的面积公式即得.【详解】由题可得.故选:D7、B【解析】利用函数单调性及中间值比大小.【详解】,且,故,,故.故选:B8、B【解析】利用指数函数和对数函数的性质,三角函数的性质比较大小即可【详解】∵,,∴;∵,∴;∵,∴,∴,又,,∴,∴综上可知故选:B9、C【解析】利用函数的单调性及零点存在定理即得.【详解】因为,所以函数单调递减,,∴函数的零点所在区间为.故选:C.10、C【解析】先解出集合A,再根据确定集合B的元素,可得答案.【详解】由题意得,,∵,,∴实数a的取值集合为,故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、①.365.25②.四【解析】(1)利用周期公式求出一个回归年对应的天数;(2)先计算出4个回归年经过的天数,再根据周期即可求解.【详解】因为周期,所以一个回归年对应的天数约为365.25;一个回归年对应的天数约为365.25,则4个回归年经过的天数为.因为,且该年春分日是星期六,所以4个回归年后的春分日应该是星期四.故答案为:365.25;四.12、9【解析】根据题意条件,先设出扇形的半径和弧长,并找到弧长与半径之间的关系,通过已知的扇形周长,可以求解出扇形的半径和弧长,然后再利用完成求解.【详解】设扇形的半径为,弧长为,由已知得,圆心角,则,因为扇形的周长为12,所以,所以,,则.故答案为:9.13、##【解析】由扇形面积公式可直接求得结果.【详解】扇形面积.故答案为:.14、##【解析】利用奇函数的性质进行求解即可.【详解】因为是奇函数,所以有,故答案:15、①.45②.35【解析】利用中位数的概念及百分位数的概念即得.【详解】由题可知甲组数据共9个数,所以甲组数据的中位数是45,由茎叶图可知乙组数据共9个数,又,所以乙组数据的25%分位数是35.故答案为:45;35.16、【解析】首先利用图像作出相邻两个面所成角,然后利用已知条件求出正四面体相邻两个面所成角的两边即可求解.【详解】由题意,四面体为正三棱锥,不妨设正三棱锥的边长为,过作平面,垂足为,取的中点,并连接、、、,如下图:由正四面体的性质可知,为底面正三角形的中心,从而,,∵为的中点,为正三角形,所以,,所以为正四面体相邻两个面所成角∵,∴易得,,∵平面,平面,∴,故.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)根据分母不为零,结合诱导公式和余弦函数的性进行求解即可;(2)根据同角的三角函数关系式,结合二倍角公式、两角差的余弦公式进行求解即可.【详解】(1)由,得,;故的定义域为(2)因为角在第一象限且,所以;从而====.18、(1)π(2)π3+kπ,(3)fx在0,π2内的最大值为【解析】(1)利用三角恒等变换化简可得fx=sin2x-π(2)令π2+2k≤2x-π6≤3π2+2k,k∈Z(3)由0≤x≤π2,可得-π6≤2x-π6≤5π【小问1详解】f(x)=sin2x-cos2x+2cosxcos=-cos2x+2cosxcos=-cos2x+1+cos2x2+=32sin2x-12cos2x=sin2x-π函数f(x)的最小正周期为T=2π2=【小问2详解】令π2+2k≤2x-π6≤3π2+2k解得π3+k≤x≤5π6+k,函数f(x)的单调递减间为π3+kπ,【小问3详解】因为0≤x≤π2,-π6≤2x-π6≤当2x-π6=π2时,即x=π3时,f(x19、(Ⅰ){3,1}(Ⅱ)p=6,q=9【解析】(Ⅰ)可求出B={-2,3},根据A∪B={-2,1,3},A∩B={3},即可求出集合A;(Ⅱ)根据条件∅AB即可得出A={-2},或{3},再根据p+q>0即可求出p,q的值【详解】(Ⅰ)B={-2,3};∵A∪B={-2,1,3},A∩B={3};∴A={3,1};(Ⅱ)∵∅AB;∴A={-2},或A={3};①若A={-2},则;∴p+q=0,不满足p+q>0;∴A≠{-2};②若A={3},则;满足p+q>0;∴p=6,q=9【点睛】考查描述法的定义,交集、并集的概念及运算,以及真子集的定义,韦达定理20、(1);证明见解析.(2)【解析】(1)由求出后可得的解析式,按照增函数的定义证明即可;(2)求出函数在上的值域为,求出在上的最值,根据的最值都属于列式可求出结果.【小问1详解】依题意可得,解得,所以.证明:任取,且,则,因为,,所以,所以为R上的增函数.【小问2详解】依题意,即,当时,为增函数,,,所以在上的值域为,因为在上的最值只可能在或或处取得,所以在上的最值只可能在或或处取得,所以在上的最值只可能是或或,因为的图像关于点对称,所以在上的最值只可能是或或,所以在上的最值只可能是或或或或,若,对,使得成立,则的最值都属于,所以,即,所以,所以,又,所以.【点睛】关键点点睛:(2)中,求出在上的最值,根据题意转化为的最值都属于是解题关键.21、(1);(2);(3)【解析】(1)利用基本函数的单调性即得;(2)由题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论