商务与经济统计学 (英文版·第14版)课件 -ch10 Categorical Data Analysis_第1页
商务与经济统计学 (英文版·第14版)课件 -ch10 Categorical Data Analysis_第2页
商务与经济统计学 (英文版·第14版)课件 -ch10 Categorical Data Analysis_第3页
商务与经济统计学 (英文版·第14版)课件 -ch10 Categorical Data Analysis_第4页
商务与经济统计学 (英文版·第14版)课件 -ch10 Categorical Data Analysis_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Chapter10CategoricalDataAnalysisContents1. CategoricalDataandtheMultinomialExperiment2. TestingCategoryProbabilities:One-WayTable3. TestingCategoryProbabilities:Two-WayContingencyTable4. AWordofCautionaboutChi-SquareTestsWhereWe’reGoingDiscussqualitative(i.e.,categorical)datawithmorethantwooutcomesPresentachi-squarehypothesistestforcomparingthecategoryproportionsassociatedwithasinglequalitativevariable–calledaone-wayanalysisPresentachi-squarehypothesistestforrelatingtwoqualitativevariables–calledatwo-wayanalysisCautionaboutthemisuseofchi-squaretests10.1CategoricalDataand

MultinomialExperimentQualitativeDataQualitativerandomvariablesyieldresponsesthatcanbeclassifiedExample:gender(male,female)QualitativedatathatfallinmorethantwocategoriesoftenresultfromamultinomialexperimentPropertiesofthe

MultinomialExperimentTheexperimentconsistsofnidenticaltrials.Therearekpossibleoutcomestoeachtrial.Theseoutcomesarecalledclasses,categories,orcells.Theprobabilitiesofthekoutcomes,denotedbyp1,p2,…,pk,remainthesamefromtrialtotrial,wherep1+p2+…+pk=1.Propertiesofthe

MultinomialExperiment(cont)Thetrialsareindependent.Therandomvariablesofinterestarethecellcounts,n1,n2,…,nk,ofthenumberofobservationsthatfallineachofthekclasses.10.2TestingCategoryProbabilities:One-WayTableMultinomialExperimentInthissection,weconsideramultinomialexperimentwithkoutcomesthatcorrespondtocategoriesofasinglequalitativevariable.Theresultsofsuchanexperimentaresummarizedinaone-waytable.Thetermone-wayisusedbecauseonlyonevariableisclassified.Typically,wewanttomakeinferencesaboutthetrueproportionsthatoccurinthekcategoriesbasedonthesampleinformationintheone-waytable.Chi-Square(

2)Test

forkProportionsTestsequality(=)ofproportionsonlyExample:p1=0.2,p2=0.3,p3=0.5OnevariablewithseverallevelsUsesone-waycontingencytableOne-Way

ContingencyTableShowsnumberofobservationsinkindependentgroups(outcomesorvariablelevels)Outcomes(k=3)NumberofresponsesCandidateTomBillMaryTotal352045100ATestofaHypothesisaboutMultinomialProbabilities:One-WayTable H0:p1=p1,0,p2=p2,0,…,pk=pk,0wherep1,0,p2,0,…,pk,0representthehypothesizedvaluesofthemultinomialprobabilities. Ha:Atleastoneofthemultinomialprobabilitiesdoesnotequalitshypothesizedvalue.ATestofaHypothesisaboutMultinomialProbabilities:One-WayTable(cont)whereEi=npi,0istheexpectedcell

count,thatis,theexpectednumberofoutcomesoftypeiassumingthatH0istrue.Thetotalsamplesizeisn.wherehas(k–1)dfandisthevalueoftheteststatistic.ConditionsRequiredforaValidTest:One-wayTableAmultinomialexperimenthasbeenconducted.Thisisgenerallysatisfiedbytakingarandomsamplefromthepopulationofinterest.Thesamplesizenislarge.Thisissatisfiedifforeverycell,theexpectedcellcountEi

willbeequalto5ormore.

2TestBasicIdeaComparesobservedcounttoexpectedcountassumingnullhypothesisistrueCloserobservedcountistoexpectedcount,themorelikelytheH0istrueMeasuredbysquareddifferencerelativetoexpectedcount-rejectlargevaluesFindingCriticalValueExampleWhatisthecritical

2

valueifk=3,and

=0.05?c20UpperTailAreaDF0.995…0.95…0.051...…0.004…3.84120.010…0.103…5.991

2Table(Portion)Ifni=E(ni),

2=0.DonotrejectH0df =k-1=25.991RejectH0

=0.05Example:

2Testfork

ProportionsApersonneldirectorwantstotesttheperceptionoffairnessofthreemethodsofperformanceevaluation.Of180employees,63ratedMethod1asfair,45ratedMethod2asfair,72ratedMethod3asfair.Atthe0.05

levelofsignificance,isthereadifferenceinperceptions?Example:

2Testfork

Proportions(cont)H0:Ha:

=n1=

n2=

n3=CriticalValue(s):p1=p2=p3=1/3Atleast1isdifferent0.0563

45

72

=0.05c20RejectH05.991Example:

2TestforkProportions(cont)Example:

2Testfork

Proportions(cont)H0:Ha:

=n1=

n2=

n3=CriticalValue(s):p1=p2=p3=1/3Atleast1isdifferent0.0563

45

72

=0.05c20RejectH05.991TestStatistic:Decision:Conclusion:

2=6.3Reject

at

=0.05Thereisevidenceofadifferenceinproportions10.3TestingCategoryProbabilities:Two-Way(Contingency)Table

2TestofIndependenceShowsifarelationshipexistsbetweentwoqualitativevariablesOnesampleisdrawnDoesnotshowcausalityUsestwo-waycontingencytable

2TestofIndependenceContingencyTableAtwo-waytable

,calledacontingencytable,

showsthemultinomialcountdataclassifiedontwoscales,ordimensions,ofclassification.Here,thedimensionarehousestyleandhouselocation.Levelsofvariable2Levelsofvariable1

2TestofIndependenceContingencyTableThesymbolsrepresentingthecellcountsforthemultinomialexperimentinprevioustableareshownbelowintheobservedcountstable.So,n11

representsthenumberofbuyerswhopreferasplit-levelhouseinanurbanenvironment.ObservedCountsforContingencyTable

2TestofIndependenceContingencyTableThemarginalprobabilitiesforeachrowandcolumnarecomputedfromtheobservedcountdata.Forexample,pr1=p11

+p12andpc1=p11+p21.Ifthetwo

classifications

are

independent,wemusthavep11

=pr1pc1,p21=pr2pc1

p12=pr1pc2,p22=pr2pc2ProbabilitiesforContingencyTableFindingExpectedCellCountsfor

aTwo-WayContingencyTableTheestimateoftheexpectednumberofobservationsfallingintothecellinrowiandcolumnjisgivenbywhereRi=totalforrowi,Cj=totalforcolumnj,andn=samplesize.GeneralFormofaTwo-Way(Contingency)TableAnalysis:

2-TestforIndependenceH0:Thetwoclassificationsareindependent.Ha:Thetwoclassificationsaredependent.whereRejectionregion:p-value:wherehas(r–1)(c–1)df.ConditionsRequiredforaValid

2-Test:ContingencyTableThenobservedcountsarearandomsamplefromthepopulationofinterest.Wemaythenconsiderthenconsiderthistobeamultinomialexperimentwithr

cpossibleoutcomes.Thesamplesize,n,willbelargeenoughsothat,foreverycell,theestimatedexpectedcountÊij

willbeequalto5ormore.112

160Marginalprobability==0.7Example:FindingExpectedCellCountsforTwo-WayContingencyTableLocation Urban Rural

HouseStyleObs. Obs. TotalSplit–Level 63 49 112Ranch 15 33 48Total 78 82 16078

160Marginalprobability==0.4875Example:FindingExpectedCellCountsforTwo-WayContingencyTable(cont)112

160Marginalprobability==0.7Location Urban Rural

HouseStyleObs. Obs. TotalSplit–Level 63 49 112Ranch

15 33 48Total 78 82 160Example:FindingExpectedCellCountsforTwo-WayContingencyTable(cont)78

160Marginalprobability==0.4875112

160Marginalprobability==0.7Jointprobability=112

16078

160Location Urban Rural

HouseStyleObs. Obs. TotalSplit–Level 63 49 112Ranch 15 33 48Total 78 82 160Expectedcount=160·112

16078

160=54.6Example:FindingExpectedCellCountsforTwo-WayContingencyTable(cont)

HouseLocation

Urban

Rural

HouseStyle

Obs.

Exp.

Obs.

Exp.

Total

Split-Level

63

112·78

16054.6

49

112·82

16057.4

112

Ranch

15

48·78

16023.4

33

48·82

16024.6

48

Total

78

78

82

82

160

Example:ConductingaTwo-WayAnalysisAsarealtoryouwanttodetermineifhousestyleandhouselocationarerelated.Atthe0.05levelofsignificance,isthereevidenceofarelationship?Example:ConductingaTwo-WayAnalysis(cont)H0:

Ha:

=df=

CriticalValue(s):NoRelationshipRelationship0.05(2–1)(2–1)=1c20RejectH03.841

=0.05Eij

5inallcells,asrequiredExample:ConductingaTwo-WayAnalysis(cont)112·82

16048·78

16048·82

160112·78

160Example:ConductingaTwo-WayAnalysis(cont)Example:ConductingaTwo-WayAnalysis(cont)H0:

Ha:

=df=

CriticalValue(s):NoRelationshipRelationship0.05(2–1)(2–1)=1c20RejectH03.841

=0.05TestStatistic:Decision:Conclusion:

2=8.41Rejectat

=0.05Thereisevidenceofarelationship10.4AWordofCautionabout

Chi-SquareTestsCautionaboutthe

2TestThe

2isoneofthemostwidelyappliedstatisticaltoolsandalsooneofthemostabusedstatisticaltool.Becertaintheexperimentsatisfiestheassumptions.Becertainthesampleisdrawnfromthecorrectpopulation.Avoidusingwhentheexpectedcountsareverysmall.Cautionaboutthe

2TestIfthe

2valuedoesnotexceedtheestablishedcriticalvalueof

2,donotacceptthehypothesisofindependence.YouriskaTypeIIerror.Avoidconcludingthattwoclassificationsareindependent,evenwhen

2issmall.Ifacontingencytable

2valuedoesexceedthecriticalvalue,wemustbecarefultoavoidinferringthatacausalrelationshipexistsbetweentheclassifications.Thee

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论