(完整版)苏教七年级下册期末数学专题资料真题经典套题解析_第1页
(完整版)苏教七年级下册期末数学专题资料真题经典套题解析_第2页
(完整版)苏教七年级下册期末数学专题资料真题经典套题解析_第3页
(完整版)苏教七年级下册期末数学专题资料真题经典套题解析_第4页
(完整版)苏教七年级下册期末数学专题资料真题经典套题解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

(完整版)苏教七年级下册期末数学专题资料真题经典套题解析一、选择题1.计算(a2)3的结果为()A.a4 B.a5 C.a6 D.a92.如图,下列各角中,与∠1是同位角的是()A.∠2 B.∠3 C.∠4 D.∠53.若方程组,的解满足x-y=-2,则a的值为()A.-1 B.1 C.-2 D.不能确定4.已知,那么的值是()A.9 B. C. D.5.如果点在第三象限,那么的取值范围是()A. B. C. D.6.给出下列4个命题:①不是对顶角的两个角不相等;②三角形最大内角不小于60°;③多边形的外角和小于内角和;④平行于同一直线的两条直线平行.其中真命题的个数是()A.1 B.2 C.3 D.47.我们知道不存在一个实数的平方等于,即在实数范围内不存在x满足.若我们规定一个新数“i”,使其满足(即方程有一个根为i).并且进一步规定:一切实数可以与新数进行四附运算,且原有运算律和运算法则仍然成立,于是有.那么的值为()A.0 B. C.1 D.i8.如图,△ABC的面积为.第一次操作:分别延长,,至点,,,使,,,顺次连接,,,得到△.第二次操作:分别延长,,至点,,,使,,,顺次连接,,,得到△,…按此规律,要使得到的三角形的面积超过2020,最少经过多少次操作()A. B. C. D.二、填空题9.计算(﹣2x3y2)3•4xy2=_____.10.命题“锐角与钝角互为补角”是___.(填“真命题”或“假命题”)11.某个正多边形有一个外角是36°,则这个正多边形是___边形.12.已知x+y=﹣2,xy=4,则x2y+xy2=______13.若方程组的解中,则k等于_____.14.如下图,想在河堤两岸搭建一座桥,图中搭建方式中,最短的是,理由是______.15.如果等腰三角形的两条边分别为5厘米和10厘米,那么这个等腰三角形的周长是_______.16.如右图,△ABC按顺时针方向旋转一个角度后成为△AED,且∠BAD=120°,则旋转中心为____,旋转角度为____.17.计算:(1).(2).(3).18.因式分解(1)(2)(3)19.解方程组:(1);(2).20.已知不等式组.(1)求此不等式组的解集,并写出它的整数解;(2)若上述整数解满足不等式,化简.三、解答题21.如图,已知,直线与相交于点,.(1)求,的度数;(2)求证:平分.22.某汽车配件厂生产甲、乙、丙三种汽车轮胎.生产各种轮胎所需的工时和产值如下表所示,又知道每周生产三种轮胎的总工时是168个,总产值是111.2万元汽车零部件甲种乙种丙种每个所需工时(个)每个产值(千元)431(1)若每周丙种轮胎生产252台,问其它两种轮胎每周分别生产多少个?(2)现有4S店以产值价的1.2倍购进这三种轮胎共100个,考虑市场需求和资金周转,其中丙种轮胎购进50个,而用于购买这100个轮胎的总资金最少24.96万元,但最多不超过25.2万元,那么该商店有哪几种购进轮胎方案?(3)若销售每件甲种轮胎可获利200元,每件乙种轮胎可获利150元,每件丙种轮胎可获利100元,在第(2)问的进货方案中,哪一种方案获利最大?最大利润是多少元?23.随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解2辆A型汽车、3辆B型汽车的进价共计80万元;3辆A型汽车、2辆B型汽车的进价共计95万元.(1)求A、B两种型号的汽车每辆进价分别为多少万元?(列方程组解应用题)(2)若该公司计划正好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买)则该公司共有种购买方案;(3)若该汽车销售公司销售1辆A型汽车可获利8000元,销售1辆B型汽车可获利5000元,在(2)中的购买方案中,假如这些新能源汽车全部售出,最大利润是元.24.如果三角形的两个内角与满足,那么我们称这样的三角形是“准互余三角形”.(1)如图1,在中,,是的角平分线,求证:是“准互余三角形”;(2)关于“准互余三角形”,有下列说法:①在中,若,,,则是“准互余三角形”;②若是“准互余三角形”,,,则;③“准互余三角形”一定是钝角三角形.其中正确的结论是___________(填写所有正确说法的序号);(3)如图2,,为直线上两点,点在直线外,且.若是直线上一点,且是“准互余三角形”,请直接写出的度数.25.认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.(探究1):如图1,在ΔABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90º+∠A,(请补齐空白处)理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线,∴∠1=∠ABC,_________________,在ΔABC中,∠A+∠ABC+∠ACB=180º.∴∠1+∠2=(∠ABC+∠ACB)=(180º-∠A)=90º-∠A,∴∠BOC=180º-(∠1+∠2)=180º-(________)=90º+∠A.(探究2):如图2,已知O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?请说明理由.(应用):如图3,在RtΔAOB中,∠AOB=90º,已知AB不平行与CD,AC、BD分别是∠BAO和∠ABO的角平分线,又CE、DE分别是∠ACD和∠BDC的角平分线,则∠E=_______;(拓展):如图4,直线MN与直线PQ相交于O,∠MOQ=60º,点A在射线OP上运动,点B在射线OM上运动,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线交于E、F,在ΔAEF中,如果有一个角是另一个角的4倍,则∠ABO=______.【参考答案】一、选择题1.C解析:C【分析】根据幂的乘方,即可解答.【详解】解:(a2)3=a6.故选:C.【点睛】本题考查了幂的乘方,掌握幂的乘方运算是解题的关键.2.D解析:D【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.【详解】解:由图可得,与∠1构成同位角的是∠5,故选:D.【点睛】本题主要考查了同位角的概念,同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.3.A解析:A【分析】将方程组两方程相减表示出x-y,代入x-y=-2中计算即可求出a的值【详解】-②得:2x-2y=4a,即x-y=2a代入x-y=-2,得:2a=-2解得:a=-1故选A【点睛】此题考查了二元一次方程组的解,解题关键在于表示出x-y4.A解析:A【分析】由a2+a-3=0,变形得到a2=-(a-3),a2+a=3,先把a2=-(a-3)代入整式得到a2(a+4)=-(a-3)(a+4),利用乘法得到原式=-(a2+a-12),再把a2+a=3代入计算即可.【详解】解:∵a2+a-3=0,∴a2=-(a-3),a2+a=3,a2(a+4)=-(a-3)(a+4)=-(a2+a-12)=-(3-12)=9.故选:A.【点睛】本题考查了整式的混和运算及其化简求值:先把已知条件变形,用底次代数式表示高次式,然后整体代入整式进行降次,进行整式运算求值.5.C解析:C【分析】第三象限的符号特征为(-,-),据此列不等式组解答.【详解】∵P(m,2m-1)在第三象限,∴,解得:,故选C.【点睛】本题考查象限的符号特征和不等式组的应用,熟练掌握第三象限符号为(-,-)是关键.6.B解析:B【分析】①举反例说明即可,②利用三角形内角和定理判断即可,③举反例说明即可,④根据平行线的判定方法判断即可.【详解】解:①如:两直线平行同位角相等,所以不是对顶角的两个角不相等,错误,;②若三角形最大内角小于60°,则三角形内角和小于180°,所以三角形最大内角不小于60°,正确;③如:三角形的外角和大于内角和,所以多边形的外角和小于内角和,错误;④平行于同一直线的两条直线平行,正确.故选:B.【点睛】本题考查了命题的真假,熟练掌握真假命题的定义及几何图形的性质是解答本题的关键,当命题的条件成立时,结论也一定成立的命题叫做真命题;当命题的条件成立时,不能保证命题的结论总是成立的命题叫做假命题.要指出一个命题是假命题,只要能够举出一个例子,使它具备命题的条件,而不符合命题的结论就可以了,这样的例子叫做反例.7.B解析:B【分析】把i+i2+i3+i4+…+i2022+i2023分成506组,根据i4n+1=i,i4n+2=-1,i4n+3=-i,i4n+4=1得到每组的和为0,从而得到原式的值.【详解】解:∵i4n+1=i,i4n+2=-1,i4n+3=-i,i4n+4=1,∴i+i2+i3+i4+…+i2022+i2023=i+(-1)+(-i)+1+…+i+(-1)+(-i)=-1.故选:B.【点睛】本题考查了实数的运算:利用实数的运算法则解决新数运算.8.A解析:A【分析】先根据已知条件求出△A1B1C1及△A2B2C2的面积,再根据两三角形的倍数关系求解即可.【详解】解:连接A1C,如图,∵AB=A1B,∴△ABC与△A1BC的面积相等,∵△ABC面积为1,∴=1.∵BB1=2BC,∴=2,同理可得,=2,=2,∴=2+2+2+1=7;同理可得:△A2B2C2的面积=7×△A1B1C1的面积=49,第三次操作后的面积为7×49=343,第四次操作后的面积为7×343=2401.故按此规律,要使得到的三角形的面积超过2020,最少经过4次操作.故选:A.【点睛】考查了三角形的中线的性质和三角形的面积,属规律性题目,解答此题的关键是找出相邻两次操作之间三角形面积的关系,再根据规律求解.二、填空题9.﹣32x10y8【详解】试题分析:分析:先算乘方,再算乘法(﹣2x3y2)3=(﹣2)3(x3)3(y2)3=﹣8x9y6,所以(﹣2x3y2)3•4xy2=(﹣8x9y6)•4xy2=﹣32x10y8.解:(﹣2x3y2)3•4xy2=(﹣8x9y6)•4xy2=﹣32x10y8点评:本题考查整式的乘法混合运算,按照运算顺序先算乘方再算乘法.10.假命题【分析】根据补角进行判断即可.【详解】解:锐角与钝角不一定互为补角,如60°与100°,原命题是假命题,故答案为:假命题.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.11.10【分析】根据正多边形的外角和为360°,且正多边形的每一个外角都相等,用360°除以36°即可求得.【详解】某个正多边形有一个外角是36°,则这个正多边形是正10边形故答案为:10【点睛】本题考查了正多边形的外角,掌握正多边形的外角和是360°是解题的关键.12.-8【分析】先提出公因式,进行因式分解,再代入,即可求解.【详解】解:∵x+y=﹣2,xy=4,∴.故答案为:.【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解方法,并会根据多项式的特征选用合适的方法是解题的关键.13.2020【分析】将方程组的两个方程相加,可得,再根据,即可得到,进而求出的值.【详解】解:,①②得,,即:,,,故答案为:2020.【点睛】本题考查二元一次方程组的解法,整体代入是求值的常用方法.14.B解析:垂线段最短【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短,据此作答即可.【详解】】解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∵PB⊥AD,∴PB最短.故答案为:垂线段最短.【点睛】此题主要考查了从直线外一点到这条直线上各点所连的线段中,垂线段最短在生活中的应用.15.25cm【分析】分两种情况讨论:当5厘米是腰时或当10厘米是腰时.根据三角形的三边关系,知5,5,10不能组成三角形,应舍去.【详解】解:当5厘米是腰时,则5+5=10,不能组成三角形,应舍解析:25cm【分析】分两种情况讨论:当5厘米是腰时或当10厘米是腰时.根据三角形的三边关系,知5,5,10不能组成三角形,应舍去.【详解】解:当5厘米是腰时,则5+5=10,不能组成三角形,应舍去;当10厘米是腰时,则三角形的周长是5+10×2=25(厘米).故答案为:25cm.【点睛】本题主要考查了三角形的三边关系,即两边之和大于第三边,两边之差小于第三边和等腰三角形的性质,解题的关键是熟练掌握等腰三角形的性质和三角形的三边关系.16.A120°【解析】∵△ABC经过顺时针旋转可以与△AED重合,∴旋转中心是A,∵△ABC按顺时针方向旋转一个角度后成为△AED,∴旋转角∠DAC=∠EAB=120°.解析:A120°【解析】∵△ABC经过顺时针旋转可以与△AED重合,∴旋转中心是A,∵△ABC按顺时针方向旋转一个角度后成为△AED,∴旋转角∠DAC=∠EAB=120°.17.(1)2;(2);(3)【分析】(1)根据负整数指数幂,零指数幂和绝对值的计算法则求解即可;(2)根据同底数幂乘法和幂的乘方,合并同类项的计算法则求解即可;(3)先计算多项式乘以多项式,单项解析:(1)2;(2);(3)【分析】(1)根据负整数指数幂,零指数幂和绝对值的计算法则求解即可;(2)根据同底数幂乘法和幂的乘方,合并同类项的计算法则求解即可;(3)先计算多项式乘以多项式,单项式乘以多项式,然后合并同类项即可.【详解】解:(1);(2);(3).【点睛】本题主要考查了负整数指数幂,零指数幂,绝对值,整式的混合运算,同底数幂的乘法,幂的乘方和合并同类项,解题的关键在于能够熟练掌握相关知识进行求解.18.(1);(2);(3).【分析】(1)直接利用平方差公式分解因式即可;(2)直接利用完全平方公式分解因式即可;(3)先提取公因式x,进而利用完全平方公式分解因式即可.【详解】(1)原式;解析:(1);(2);(3).【分析】(1)直接利用平方差公式分解因式即可;(2)直接利用完全平方公式分解因式即可;(3)先提取公因式x,进而利用完全平方公式分解因式即可.【详解】(1)原式;(2)原式.(3)原式=.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用乘法公式是解题关键.19.(1);(2)【分析】(1)用加减消元法解二元一次方程组即可;(2)先将方程组变形,然后用加减消元法解二元一次方程组即可.【详解】解:(1),②+①得,,将代入①得,,∴方解析:(1);(2)【分析】(1)用加减消元法解二元一次方程组即可;(2)先将方程组变形,然后用加减消元法解二元一次方程组即可.【详解】解:(1),②+①得,,将代入①得,,∴方程组的解为;(2)方程组变形为,②×3+①得,,将代入②得,,∴方程组的解为.【点睛】本题考查了解二元一次方程组,熟练掌握加减消元法、代入消元法解二元一次方程组,并能准确计算是解题的关键.20.(1)不等式组的解集为,整数解为;(2)-2【分析】(1)先解不等式组的解集,再从解集中找出整数解即可.(2)根据题意求得,进而即可把化简.【详解】解:(1)由①得:,由②得:,∴不等解析:(1)不等式组的解集为,整数解为;(2)-2【分析】(1)先解不等式组的解集,再从解集中找出整数解即可.(2)根据题意求得,进而即可把化简.【详解】解:(1)由①得:,由②得:,∴不等式组的解集为,∴不等式组的整数解为.(2)把代入不等式,得:,解得:,∴,,.【点睛】本题考查了一元一次不等式组的解法以及不等式组的整数解,也考查了绝对值的性质,是基础知识要熟练掌握,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.三、解答题21.(1)36°,72°;(2)证明见解析.【分析】(1)根据平行线的性质与角度的比值求得∠2的度数,再求得∠1的度数即可;(2)根据∠EBA与互补求得∠EBA的度数即可得证.【详解】解:解析:(1)36°,72°;(2)证明见解析.【分析】(1)根据平行线的性质与角度的比值求得∠2的度数,再求得∠1的度数即可;(2)根据∠EBA与互补求得∠EBA的度数即可得证.【详解】解:(1)∵,∴∠2+∠3=180°,∵∠2:∠3=2:3,∴∠2==72°.∵∠1:∠2=1:2,∴∠1==36°;(2)证明:∵∠EBA=180°-∠2-∠1=180°-72°-36°=72°,∴∠EBA=∠2,即BA平分∠EBF.【点睛】本题主要考查平行线的性质,角平分线的定义,解此题的关键在于熟练掌握其知识点并能灵活运用逻辑推理进行证明.22.(1)甲种轮胎生产170个,乙种轮胎生产60个;(2)有三种采购方案,方案一:购进甲种8个,乙种42个,丙种50个;方案二:购进甲种9个,乙种41个,丙种50个;方案三:购进甲种10个,乙种40个,解析:(1)甲种轮胎生产170个,乙种轮胎生产60个;(2)有三种采购方案,方案一:购进甲种8个,乙种42个,丙种50个;方案二:购进甲种9个,乙种41个,丙种50个;方案三:购进甲种10个,乙种40个,丙种50个;(3)方案三获利最多,按这种方案可获利13000元【分析】(1)设甲种轮胎生产个,乙种轮胎生产个,根据题意列出二元一次方程组求解即可;(2)设该店购进甲种轮胎个,则购进乙种轮胎个,列出不等式求出m的取值范围,再根据m取整数判断即可;(3)根据(2)中的三个方案分别计算即可;【详解】解:(1)设甲种轮胎生产个,乙种轮胎生产个,根据题意得:,解这个方程组,得;答:甲种轮胎生产170个,乙种轮胎生产60个;(2)设该店购进甲种轮胎个,则购进乙种轮胎个,根据题意得:,解这个不等式组,得,∵为正整数,∴的值为8或9或10,因此有三种采购方案:方案一:购进甲种8个,乙种42个,丙种50个;方案二:购进甲种9个,乙种41个,丙种50个;方案三:购进甲种10个,乙种40个,丙种50个;(3)售出这些轮胎可获利:方案一:(元);方案二:(元);方案三:(元)答:方案三获利最多,按这种方案可获利13000元.【点睛】本题主要考查了二元一次方程组的应用和一元一次不等式的应用,准确计算是解题的关键.23.(1)型汽车每辆进价为万元,型汽车每辆进价为万元;(2)3;(3)【分析】(1)设型汽车每辆进价为万元,型汽车每辆进价为万元,根据题意列出二元一次方程组解方程组求解即可;(2)设购进型汽车辆,解析:(1)型汽车每辆进价为万元,型汽车每辆进价为万元;(2)3;(3)【分析】(1)设型汽车每辆进价为万元,型汽车每辆进价为万元,根据题意列出二元一次方程组解方程组求解即可;(2)设购进型汽车辆,型汽车辆,依题意列出二元一次方程,根据为正整数,求得整数解,即可求得方案数(3)根据(2)的方案以及题意,分别计算利润,比较之即可求得最大利润.【详解】(1)设型汽车每辆进价为万元,型汽车每辆进价为万元,根据题意,得解得答:型汽车每辆进价为万元,型汽车每辆进价为万元.(2)设购进型汽车辆,型汽车辆,依题意得为正整数,或或有3种购买方案故答案为:3(3)该汽车销售公司销售1辆A型汽车可获利8000元,销售1辆B型汽车可获利5000元,方案1,获得的利润为:(元)方案2,获得的利润为:(元)方案3,获得的利润为:(元)购进型汽车2辆,型汽车辆时,获利最大,最大利润是元故答案为:【点睛】本题考查了二元一次方程组的应用,找准等量关系列出方程组是解题的关键.24.(1)见解析;(2)①③;(3)∠APB的度数是10°或20°或40°或110°【分析】(1)由和是的角平分线,证明即可;(2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角解析:(1)见解析;(2)①③;(3)∠APB的度数是10°或20°或40°或110°【分析】(1)由和是的角平分线,证明即可;(2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角形”的定义,分类讨论:①2∠A+∠ABC=90°;②∠A+2∠APB=90°;③2∠APB+∠ABC=90°;④2∠A+∠APB=90°,由三角形内角和定理和外角的性质结合“准互余三角形”的定义,即可求出答案.【详解】(1)证明:∵在中,,∴,∵BD是的角平分线,∴,∴,∴是“准互余三角形”;(2)①∵,∴,∴是“准互余三角形”,故①正确;②∵,,∴,∴不是“准互余三角形”,故②错误;③设三角形的三个内角分别为,且,∵三角形是“准互余三角形”,∴或,∴,∴,∴“准互余三角形”一定是钝角三角形,故③正确;综上所述,①③正确,故答案为:①③;(3)∠APB的度数是10°或20°或40°或110°;如图①,当2∠A+∠ABC=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠A=20°,∴∠APB=110°;如图②,当∠A+2∠APB=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,∴∠APB=40°;如图③,当2∠APB+∠ABC=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠APB=20°;如图④,当2∠A+∠APB=90°时,△ABP是“准直角三角形”,∵∠ABC=50°,∴∠A+∠APB=50°,所以∠A=40°,所以∠APB=10°;综上,∠APB的度数是10°或20°或40°或110°时,是“准互余三角形”.【点睛】本题是三角形综合题,考查了三角形内角和定理,三角形的外角的性质,解题关键是理解题意,根据三角形内角和定理和三角形的外角的性质,结合新定义进行求解.25.【探究1】∠2=∠ACB,90º-∠A;【探究2】∠BOC=90°﹣∠A,理由见解析;【应用】22.5°;【拓展】45°或36°.【分析】【探究1】根据角平分线的定义可得∠1=∠ABC,∠2=∠解析:【探究1】∠2=∠ACB,90º-∠A;【探究2】∠BOC=90°﹣∠A,理由见解析;【应用】22.5°;【拓展】45°或36°.【分析】【探究1】根据角平分线的定义可得∠1=∠ABC,∠2=∠ACB,根据三角形的内角和定理可得∠1+∠2=90º-∠A,再根据三角形的内角和定理即可得出结论;【探究2】如图2,由三角形的外角性质和角平分线的定义可得∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),然后再根据三角形的内角和定理即可得出结论;【应用】延长AC与BD,设交点为G,如图5,由【探究1】的结论可得∠G的度数,于是可得∠GCD+∠GDC的度数,然后根据角平分线的定义和角的和差可得∠1+∠2的度数,再根据三角形的内角和定理即可求出结果;【拓展】根据角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论