2025-2026学年陕西省渭南市韩城市数学高一上期末达标测试试题含解析_第1页
2025-2026学年陕西省渭南市韩城市数学高一上期末达标测试试题含解析_第2页
2025-2026学年陕西省渭南市韩城市数学高一上期末达标测试试题含解析_第3页
2025-2026学年陕西省渭南市韩城市数学高一上期末达标测试试题含解析_第4页
2025-2026学年陕西省渭南市韩城市数学高一上期末达标测试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025-2026学年陕西省渭南市韩城市数学高一上期末达标测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知角的终边经过点,则的值为()A.11 B.10C.12 D.132.若是第三象限角,且,则是A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角3.已知函数(,,)的图象如图所示,则()A.B.对于任意,,且,都有C.,都有D.,使得4.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件5.设,,,则,,的大小关系是()A. B.C. D.6.已知且,则()A.有最小值 B.有最大值C.有最小值 D.有最大值7.若将函数的图象上所有点的横坐标缩短为原来的一半(纵坐标不变),再将所得图象向左平移个单位长度,得到函数的图象,则下列说法正确的是()A.的最小正周期为 B.在区间上单调递减C.图象的一条对称轴为直线 D.图象的一个对称中心为8.已知函数,函数,若有两个零点,则m的取值范围是()A. B.C. D.9.中,设,,为中点,则A. B.C. D.10.函数y=sin2x,xR的最小正周期是()A.3π B.πC.2 D.1二、填空题:本大题共6小题,每小题5分,共30分。11.已知一组样本数据x1,x2,…,x10,且++…+=2020,平均数,则该组数据的标准差为_________.12.函数的值域为_____________13.全集,集合,则______14.若函数在区间上单调递增,则实数的取值范围是__________.15.已知函数,为偶函数,则______16.已知f(x)是定义在R上的偶函数,且在区间(−∞,0)上单调递增.若实数a满足f(2|a-1|)>f(-2),则a的取值范围是三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知角的顶点在坐标原点,始边与x轴正半轴重合,终边经过点.(1)求,;(2)求的值.18.已知函数f(x)=lg,(1)求f(x)的定义域并判断它的奇偶性(2)判断f(x)的单调性并用定义证明(3)解关于x的不等式f(x)+f(2x2﹣1)<019.已知函数,在区间上有最大值4,最小值1,设(1)求的值;(2)不等式在上恒成立,求实数的取值范围;(3)方程有三个不同的实数解,求实数k的取值范围20.已知函数.(1)求在闭区间的最大值和最小值;(2)设函数对任意,有,且当时,.求在区间上的解析式.21.求满足下列条件的圆的方程:(1)经过点,,圆心在轴上;(2)经过直线与的交点,圆心为点.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由角的终边经过点,根据三角函数定义,求出,带入即可求解.【详解】∵角的终边经过点,∴,∴.故选:B【点睛】利用定义法求三角函数值要注意:(1)三角函数值的大小与点P(x,y)在终边上的位置无关,严格代入定义式子就可以求出对应三角函数值;(2)当角的终边在直线上时,或终边上的点带参数必要时,要对参数进行讨论2、D【解析】根据是第三象限角,写出角的集合,进一步得到的集合,再根据得到答案【详解】是第三象限角,,则,即是第二象限或者第四象限角,,是第四象限角故选:D3、C【解析】根据给定函数图象求出函数的解析式,再逐一分析各个选项即可判断作答.【详解】观察函数的图象得:,令的周期为,则,即,,由,且得:,于是有,对于A,,A不正确;对于B,取且,满足,,且,而,,此时,B不正确;对于C,,,,即,都有,C正确;对于D,由得:,解得:,令,解得与矛盾,D不正确.故选:C4、B【解析】根据充分条件、必要条件的概念判断即可.【详解】若,则成立,即必要性成立,反之若,则不成立,所以“”是“”的必要不充分条件.故选:B.5、A【解析】根据指数函数与对数函数的图像与性质,结合中间量法,即可比较大小.【详解】由指数函数与对数函数的图像与性质可知综上可知,大小关系为故选:A【点睛】本题考查了指数函数与对数函数的图像与性质的应用,中间值法是比较大小常用方法,属于基础题.6、A【解析】根据,变形为,再利用不等式的基本性质得到,进而得到,然后由,利用基本不等式求解.【详解】因为,所以,所以,所以,所以,所以,当且仅当时取等号,故选:A.【点睛】思路点睛:本题思路是利用分离常数法转化为,再由,利用不等式的性质构造,再利用基本不等式求解.7、D【解析】根据题意函数的图象上所有点的横坐标缩短为原来的一半(纵坐标不变),再将所得图象向左平移个单位长度,得到函数,即可求出最小正周期,把看成是整体,分别求的单调递减区间、对称轴、对称中心,在分别验证选项即可得到答案.【详解】由于函数的图象上所有点的横坐标缩短为原来的一半(纵坐标不变),故函数的解析式为,再将所得图象向左平移个单位长度,.,故A错误;的单调减区间为,故在区间内不单调递减;图象的对称轴为,不存在使得图象的一条对称轴为直线,故C错误;图象的对称中心的横坐标为,当时,图象的一个对称中心为,故D正确.故选:D.8、A【解析】存在两个零点,等价于与的图像有两个交点,数形结合求解.【详解】存在两个零点,等价于与的图像有两个交点,在同一直角坐标系中绘制两个函数的图像:由图可知,当直线在处的函数值小于等于1,即可保证图像有两个交点,故:,解得:故选:A.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图像,利用数形结合的方法求解.9、C【解析】分析:直接利用向量的三角形法则求.详解:由题得,故答案为C.点睛:(1)本题主要考查向量的加法和减法法则,意在考查学生对这些基础知识的掌握水平和转化能力.(2)向量的加法法则:,向量的减法法则:.10、B【解析】根据解析式可直接求出最小正周期.【详解】函数的最小正周期为.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、9【解析】根据题意,利用方差公式计算可得数据的方差,进而利用标准差公式可得答案【详解】根据题意,一组样本数据,且,平均数,则其方差,则其标准差,故答案为:9.12、【解析】利用二倍角余弦公式可得令,结合二次函数的图象与性质得到结果.【详解】由题意得:令,则∵在上单调递减,∴的值域为:故答案为:【点睛】本题给出含有三角函数式的“类二次”函数,求函数的值域.着重考查了三角函数的最值和二次函数在闭区间上的值域等知识,属于中档题13、【解析】直接利用补集的定义求解【详解】因为全集,集合,所以,故答案为:14、【解析】按a值对函数进行分类讨论,再结合函数的性质求解作答.【详解】当时,函数在R上单调递增,即在上递增,则,当时,函数是二次函数,又在上单调递增,由二次函数性质知,,则有,解得,所以实数的取值范围是.故答案为:15、4【解析】利用二次函数为偶函数的性质得一次项系数为0,定义域关于原点对称,即可求得的值.【详解】由题意得:解得:故答案为:.【点睛】本题考查二次函数的性质,考查逻辑推理能力和运算求解能力,求解时注意隐含条件的挖掘.16、(【解析】由题意f(x)在(0,+∞)上单调递减,又f(x)是偶函数,则不等式f(2a-1)>f(-2)可化为f(2三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】(1)根据三角函数的定义,即可求出结果;(2)利用诱导公式对原式进行化简,代入,的值,即可求出结果.【详解】解:(1)因为角的终边经过点,由三角函数的定义知,(2)诱导公式,得.18、(1)奇函数(2)见解析(3)【解析】(1)先求函数f(x)的定义域,然后检验与f(x)的关系即可判断;(2)利用单调性的定义可判断f(x)在(﹣1,1)上单调性;(3)结合(2)中函数的单调性及函数的定义域,建立关于x的不等式,可求【详解】(1)的定义域为(-1,1)因为,所以为奇函数(2)为减函数.证明如下:任取两个实数,且,===<0<0,所以在(-1,1)上为单调减函数(3)由题意:,由(1)、(2)知是定义域内单调递减的奇函数即不等式的解集为(,)【点睛】本题主要考查了函数单调性及奇偶性的定义的应用,及函数单调性在求解不等式中的应用19、(1);(2);(3).【解析】(1)根据题意,结合二次函数的图象与性质,列出方程组,即可求解;(2)由题意得到,根据转化为在上恒成立,结合二次函数的性质,即可求解;(3)化简得到,令,得到,根据题意转化为方程有两个根且,结合二次函数的性质,即可求解.【详解】(1)由题意,函数,可得对称轴为,当时,在上为增函数,可得,即,解得;当时,在上为减函数,可得,即,解得,因为,所以.(2)由(1)可得,所以,方程化为,所以,令,则,因为,可得,令,当时,可得,所以,即实数的取值范围是.(3)方程,可化为,可得且,令,则方程化为,方程有三个不同的实数解,所以由的图象知,方程有两个根且,记,则或,解得,综上所述,实数的取值范围是.20、(1)最大值为,最小值为;(2).【解析】(1)利用两角和的正弦公式,二倍角公式以及辅助角公式将化简,再由三角函数的性质求得最值;(2)利用时,,对分类求出函数的解析式即可.【详解】(1),因为,所以,则,,所以的最大值为;的最小值为;(2)当时,,当时,,,当时,;,综上:在区

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论