教学案例导数与函数的单调性(复习课)_第1页
教学案例导数与函数的单调性(复习课)_第2页
教学案例导数与函数的单调性(复习课)_第3页
教学案例导数与函数的单调性(复习课)_第4页
教学案例导数与函数的单调性(复习课)_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

§3.2导数与函数的单调性(复习课)一、教学目标:1.结合实例,借助几何直观了解函数的单调性与导数的关系.2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).二、教学重点:利用导数判断一个函数在其定义区间内的单调性.教学难点:判断复合函数的单调区间及应用;利用导数的符号判断函数的单调性.三、教学过程(一)复习引入1.增函数、减函数的定义一般地,设函数f(x)的定义域为!:如果对于属干定义域I内某个区间如果对于属于定义域I内某个区间上的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数。当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数。2.函数的单调性如果函数y=f(x)在某个区间是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做y=f(x)的单调区间.在单调区间上增函数的图象是上升的,减函数的图象是下降的。知识梳理1.函数的单调性与导数的关系条件恒有结论函数y=f(x)在区间(a,b)上可导f′(x)>0f(x)在区间(a,b)上单调递增f′(x)<0f(x)在区间(a,b)上单调递减f′(x)=0f(x)在区间(a,b)上是常数函数2.利用导数判断函数单调性的步骤第1步,确定函数的定义域;第2步,求出导数f′(x)的零点;第3步,用f′(x)的零点将f(x)的定义域划分为若干个区间,列表给出f′(x)在各区间上的正负,由此得出函数y=f(x)在定义域内的单调性.常用结论1.若函数f(x)在(a,b)上单调递增,则x∈(a,b)时,f′(x)≥0恒成立;若函数f(x)在(a,b)上单调递减,则x∈(a,b)时,f′(x)≤0恒成立.合作探究题型一不含参数的函数的单调性1(1)函数f(x)=x2-2lnx的单调递减区间是()A.(0,1) B.(1,+∞)C.(-∞,1) D.(-1,1)(2)若函数f(x)=eq\f(lnx+1,ex),则函数f(x)的单调递减区间为________.题型二含参数的函数的单调性2已知函数f(x)=eq\f(1,2)ax2-(a+1)x+lnx,a>0,试讨论函数y=f(x)的单调性.题型三根据函数的单调性求参数的范围3已知函数f(x)=eq\f(1,2)x2+2ax-lnx,若f(x)在区间eq\b\lc\[\rc\](\a\vs4\al\co1(\f(1,3),2))上单调递增,则实数a的取值范围为________.总结:(1)利用集合间的包含关系处理:y=f(x)在(a,b)上单调,则区间(a,b)是相应单调区间的子集.(2)f(x)为增(减)函数的充要条件是对任意的x∈(a,b)都有f′(x)≥0(f′(x)≤0),且在(a,b)内的任一非空子区间上,f′(x)不恒为零,应注意此时式子中的等号不能省略,否则会漏解.(3)函数在某个区间上存在单调区间可转化为不等式有解问题.参考答案例1(1)函数f(x)=x2-2lnx的单调递减区间是()A.(0,1) B.(1,+∞)C.(-∞,1) D.(-1,1)答案A解析∵f′(x)=2x-eq\f(2,x)=eq\f(2x+1x-1,x)(x>0),令f′(x)=0,得x=1,∴当x∈(0,1)时,f′(x)<0,f(x)单调递减;当x∈(1,+∞)时,f′(x)>0,f(x)单调递增.(2)若函数f(x)=eq\f(lnx+1,ex),则函数f(x)的单调递减区间为________.答案(1,+∞)解析f(x)的定义域为(0,+∞),f′(x)=eq\f(\f(1,x)-lnx-1,ex),令φ(x)=eq\f(1,x)-lnx-1(x>0),φ′(x)=-eq\f(1,x2)-eq\f(1,x)<0,φ(x)在(0,+∞)上单调递减,且φ(1)=0,∴当x∈(0,1)时,φ(x)>0,当x∈(1,+∞)时,φ(x)<0,∴f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.∴f(x)的单调递增区间为(-∞,0),(ln2,+∞),单调递减区间为(0,ln2).例2已知函数f(x)=eq\f(1,2)ax2-(a+1)x+lnx,a>0,试讨论函数y=f(x)的单调性.解函数的定义域为(0,+∞),f′(x)=ax-(a+1)+eq\f(1,x)=eq\f(ax2-a+1x+1,x)=eq\f(ax-1x-1,x).令f′(x)=0,得x=eq\f(1,a)或x=1.①当0<a<1时,eq\f(1,a)>1,∴x∈(0,1)和eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,a),+∞))时,f′(x)>0;x∈eq\b\lc\(\rc\)(\a\vs4\al\co1(1,\f(1,a)))时,f′(x)<0,∴函数f(x)在(0,1)和eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,a),+∞))上单调递增,在eq\b\lc\(\rc\)(\a\vs4\al\co1(1,\f(1,a)))上单调递减;②当a=1时,eq\f(1,a)=1,∴f′(x)≥0在(0,+∞)上恒成立,∴函数f(x)在(0,+∞)上单调递增;③当a>1时,0<eq\f(1,a)<1,∴x∈eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(1,a)))和(1,+∞)时,f′(x)>0;x∈eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,a),1))时,f′(x)<0,∴函数f(x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(1,a)))和(1,+∞)上单调递增,在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,a),1))上单调递减.综上,当0<a<1时,函数f(x)在(0,1)和eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,a),+∞))上单调递增,在eq\b\lc\(\rc\)(\a\vs4\al\co1(1,\f(1,a)))上单调递减;当a=1时,函数f(x)在(0,+∞)上单调递增;当a>1时,函数f(x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(1,a)))和(1,+∞)上单调递增,在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,a),1))上单调递减.延伸探究若将本例中参数a的范围改为a∈R,其他条件不变,试讨论f(x)的单调性?解当a>0时,讨论同上;当a≤0时,ax-1<0,∴x∈(0,1)时,f′(x)>0;x∈(1,+∞)时,f′(x)<0,∴函数f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.综上,当a≤0时,函数f(x)在(0,1)上单调递增,在(1,+∞)上单调递减;当0<a<1时,函数f(x)在(0,1)和eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,a),+∞))上单调递增,在eq\b\lc\(\rc\)(\a\vs4\al\co1(1,\f(1,a)))上单调递减;当a=1时,函数f(x)在(0,+∞)上单调递增;当a>1时,函数f(x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(1,a)))和(1,+∞)上单调递增,在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,a),1))上单调递减.例3已知函数f(x)=eq\f(1,2)x2+2ax-lnx,若f(x)在区间eq\b\lc\[\rc\](\a\vs4\al\co1(\f(1,3),2))上单调递增,则实数a的取值范围为________.答案eq\b\lc\[\rc\)(\a\vs4\al\co1(\f(4,3),+∞))解析由题意知f′(x)=x+2a-eq\f(1,x)≥0在eq\b\lc\[\rc\](\a\vs4\al\co1(\f(1,3),2))上恒成立,即2a≥-x+eq\f(1,x)在eq\b\lc\[\rc\](\a\vs4\al\co1(\f(1,3),2))上恒成立,∵eq\b\lc\(\rc\)(\a\vs4\al\co1(-x+\f(1,x)))max=eq\f(8,3),∴2a≥eq\f(8,3),即a≥eq\f(4,3).延伸探究在本例中,把“f(x)在区间eq\b\lc\[\rc\](\a\vs4\al\co1(\f(1,3),2))上单调递增”改为“f(x)在区间eq\b\lc\[\rc\](\a\vs4\al\co1(\f(1,3),2))上存在单调递增区间”,求a的取值范围.解f′(x)=x+2a-eq\f(1,x),若f(x)在eq\b\lc\[\rc\](\a\vs4\al\co1(\f(1,3),2))上存在单调递增区间,则当x∈eq\b\lc\[\rc\](\a\vs4\al\co1(\f(1,3),2))时,f′(x)>0有解,即2a>-x+eq\f(1,x)有解,∵x∈eq\b\lc\[\rc\](\a\vs4\al\co1(\f(1,3),2)),∴eq\b\lc\(\rc\)(\a\vs4\al\co1(-x+\f(1,x)))min=-2+eq\f(1,2)=-eq\f(3,2),∴2a>-eq\f(3,2),即a>-eq\f(3,4),故a的取值范围是eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(3,4),+∞)).课后作业1.函数f(x)=xlnx+1的单调递减区间是()A.eq\b\lc\(\rc\)(\a\vs4\al\co1(-∞,\f(1,e))) B.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,e),+∞))C.eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(1,e))) D.(e,+∞)2.已知函数f(x)=x(ex-e-x),则f(x)()A.是奇函数,且在(0,+∞)上单调递减B.是奇函数,且在(0,+∞)上单调递增C.是偶函数,且在(0,+∞)上单调递减D.是偶函数,且在(0,+∞)上单调递增3.已知函数y=xf′(x)的图象如图所示(其中f′(x)是函数f(x)的导函数).下面四个图象中y=f(x)的图象大致是()4.若函数f(x)=-x2+4x+blnx在区间(0,+∞)上是减函数,则实数b的取值范围是()A.[-1,+∞) B.(-∞,-1]C.(-∞,-2] D.[-2,+∞)5.(多选)如果函数f(x)对定义域内的任意两实数x1,x2(x1≠x2)都有eq\f(x1fx1-x2fx2,x1-x2)>0,则称函数y=f(x)为“F函数”.下列函数不是“F函数”的是()A.f(x)=ex B.f(x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论