版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
(完整版)初中苏教七年级下册期末数学模拟测试试题经典套题解析一、选择题1.下列计算正确的是()A.a8÷a2=a4 B.a3·a4=a7 C.(2a2)3=6a6 D.()-2=2.如图,下面结论正确的是()A.和是同位角 B.和是内错角C.和是同旁内角 D.和是内错角3.已知关于x,y的方程组给出下列结论:①当a=1时,方程组的解也是x+y=2a+1的解;②无论a取何值,x,y的值不可能是互为相反数;③x,y的自然数解有3对;④若2x+y=8,则a=2.正确的结论有()个.A.1 B.2 C.3 D.44.对于下列命题:①若,则;②在直角三角形中,任意两个内角的和一定大于第三个内角;③无论取何值,代数式的值都不小于1.④在同一个平面内,有两两相交的三条直线,这些相交直线构成的所有角中,至少有一个角小于.其中真命题有()A.1个 B.2个 C.3个 D.4个5.如果关于的不等式组的解集为,且关于的方程有正整数解,则所有符合条件的整数的值有几个()A.0个 B.1个 C.2个 D.3个6.以下说法中:(1)多边形的外角和是;(2)两条直线被第三条直线所截,内错角相等;(3)三角形的3个内角中,至少有2个角是锐角.其中真命题的个数为()A.0 B.1 C.2 D.37.任意大于1的正整数m的三次幂均可“分裂”成m个连续奇数的和,如:23=3+5,33=7+9+11,43=13+15+17+19,…按此规律,若m3分裂后,其中有一个奇数是2019,则m的值是()A.46 B.45 C.44 D.438.如图,在长方形ABCD中,E为AB中点,以BE为边作正方形BEFG,边EF交CD于点H,在边BE上取点M使BM=BC,作MN∥BG交CD于点L,交FG于点N.欧几里得在《几何原本》中利用该图解释了,连结AC,记△ABC的面积为,图中阴影部分的面积为.若,则的值为()A. B. C. D.二、填空题9.计算:2x•(﹣3xy)=___.10.命题:“如果|a|=|b|,那么a=b”的逆命题是:____(填“真命题”或“假命题”).11.一个多边形的内角和是它的外角和的4倍,则这个多边形的边数是________.12.在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生密码,方便记忆.原理是:如对于多项式,因式分解的结果是,若取,时,则各个因式的值是:,,,于是就可以把“018162”作为一个六位数的密码.对于多项式,取,时,用上述方法产生的密码是:____________(写出一个即可).13.若满足方程组的x与y互为相反数,则m的值为_____.14.如图,在一块长为a米、宽为b米的长方形地上,有一条弯曲的柏油马路,马路的任何地方的水平宽度都是2米,其他部分都是草地,则草地的面积为__________平方米.15.两根木棒分别长3cm、7cm,第三根木棒与这两根木棒首尾依次相接构成三角形.如果第三根木棒的长为偶数(单位:cm),那么所构成的三角形周长为________cm.16.如图,点D,E,F,G分别是BC,AD,BE,CE的中点,若三角形内有一点,则点落在内(包括边界)的概率为________.17.计算:(1)(2)18.因式分解(1)(2)19.解方程组:(1).(2).20.解关于的不等式三、解答题21.把下面的证明补充完整.如图,已知直线分别交直线于点平分平分.求证:证明:(已知)(_____________________)平分平分(已知),____________,___________(__________),_________________(等量代换)(_______________________)22.某市出租车的起步价是7元(起步价是指不超过行程的出租车价格),超过3km行程后,其中除的行程按起步价计费外,超过部分按每千米1.6元计费(不足按计算).如果仅去程乘出租车而回程时不乘坐此车,并且去程超过,那么顾客还需付回程的空驶费,超过部分按每千米0.8元计算空驶费(即超过部分实际按每千米2.4元计费).如果往返都乘同一出租车并且中间等候时间不超过3分钟,则不收取空驶费而加收1.6元等候费.现设小文等4人从市中心A处到相距()的B处办事,在B处停留的时间在3分钟以内,然后返回A处.现在有两种往返方案:方案一:去时4人同乘一辆出租车,返回都乘公交车(公交车票为每人2元);方案二:4人乘同一辆出租车往返.问选择哪种计费方式更省钱?(写出过程)23.已知关于的二元一次方程,是不为零的常数.(1)若是该方程的一个解,求的值;(2)当每取一个不为零的值时,都可得到一个方程,而这些方程有一个公共解,试求出这个公共解;(3)当时,;当时,.若,求整数n的值.24.如图,直线,一副直角三角板中,.(1)若如图1摆放,当平分时,证明:平分.(2)若如图2摆放时,则(3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数.(4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长.(5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间.25.直线与直线垂直相交于点O,点A在直线上运动,点B在直线上运动.(1)如图1,已知分别是和角的平分线,点在运动的过程中,的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出的大小.(2)如图2,已知不平行分别是和的角平分线,又分别是和的角平分线,点在运动的过程中,的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出的度数.(3)如图3,延长至G,已知的角平分线与的角平分线及反向延长线相交于,在中,如果有一个角是另一个角的3倍,则的度数为____(直接写答案)【参考答案】一、选择题1.B解析:B【分析】分别根据同底数幂的乘除法法则,幂的乘方与积的乘方运算法则以及负整数指数幂的运算法则逐一判断即可.【详解】解:A.a8÷a2=a6,故本选项不合题意;B.a3·a4=a7,正确;C.(2a2)3=8a6,故本选项不合题意;D,()-2=4,故本选项不合题意.故选:B.【点睛】本题主要考查了同底数幂的乘除法,幂的乘方与积的乘方以及负整数指数幂,熟记幂的运算法则是解答本题的关键.2.D解析:D【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角;内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角;同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角作答【详解】解:A、由同位角的概念可知,∠1与∠2不是同位角,故A选项错误;B、由内错角的概念可知,∠2与∠3不是内错角,故B选项错误;C、和是对顶角,故C错误;D、由内错角的概念可知,∠1与∠4是内错角,故D选项正确.故选:D.【点睛】本题考查了同位角、内错角、同旁内角的概念;解题的关键是理解三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F”形,内错角的边构成“Z”形,同旁内角的边构成“U”形.3.C解析:C【分析】先解出二元一次方程组得,①当a=1时,方程组的解为,则x+y=3=2a+1;②x+y=1+2a+2﹣2a=3,无论a取何值,x,y的值不可能是互为相反数;③,是自然数,解得有4对解;④2x+y=2(1+2a)+(2﹣2a)=4+2a=8,则a=2.【详解】解:,①﹣②,得y=2﹣2a,将y=2﹣2a代入②,得x=1+2a,∴方程组的解为,当a=1时,方程组的解为,∴x+y=3=2a+1,∴①结论正确;∵x+y=1+2a+2﹣2a=3,∴无论a取何值,x,y的值不可能是互为相反数,∴②结论正确;,是自然数共4对∴x,y的自然数解有4对,∴③结论不正确;∵2x+y=2(1+2a)+(2﹣2a)=4+2a=8,∴a=2,∴④结论正确;故选:C.【点睛】本题考查了二元一次方程的解,二元一次方程组的解,解二元一次方程组
,解题的关键是掌握二元一次方程的解,二元一次方程组的解,解二元一次方程组.4.A解析:A【分析】根据不等式的性质、三角形内角和定理、完全平方公式、以及平角的定义解答即可.【详解】解:①当a=-1,b=-2时,满足a>b,但a2<b2;原命题是假命题;②在直角三角形中,两个锐角和等于第三个内角,原命题是假命题;③无论x取什么值,代数式x2-2x+2=(x-1)2+1≥1,所以其值都不小于1,是真命题;④在同一平面内,有两两相交的3条直线,这些相交直线构成的所有角中,当三个角都等于60°时,三个角的和等于180°,条件成立,所以原命题是假命题.故答案为:A.【点睛】本题考查了命题与定理知识点,主要考查学生的辨析能力,题目比较典型,但是一道比较容易出错的题目.5.B解析:B【分析】表示出不等式组的解集,由已知解集确定出m的范围,表示出方程的解,由方程的解为正整数,确定出整数m的值即可.【详解】解:不等式组整理得:,由不等式组的解集为x≥1,得到m+4≤1,即m≤-3,方程去分母得:m-1+x=3x-6,解得:,由方程有正整数解,故,且能被2整除,∴m=-3,则符合条件的整数m的值有1个.故选:B.【点睛】此题考查了一元一次不等式组的整数解,熟练掌握不等式组的解法是解本题的关键.6.C解析:C【解析】【分析】利用多边形的外角和定理、平行线的性质及三角形的内角和定理分别判断后即可确定正确的选项.【详解】解:(1)多边形的外角和是360°,正确,是真命题;(2)两条平行线被第三条直线所截,内错角相等,故错误,是假命题;(3)三角形的3个内角中,至少有2个角是锐角,正确,是真命题,真命题有2个,故选:C.【点睛】考查了命题与定理的知识,解题的关键是了解多边形的外角和定理、平行线的性质及三角形的内角和定理,难度不大.7.B解析:B【分析】由特殊出发,找出连续奇数的第一项和最后一项,并得到规律即可完成.【详解】23=3+5,第一项为22﹣2+1,最后一项为3+2×133=7+9+11,第一项为32﹣3+1,最后一项为7+2×243=13+15+17+19,第一项为42﹣4+1,最后一项为13+2×3…453的第一项为452﹣45+1=1981,最后一项为1981+2×44=2069,1981到2069之间有奇数2019,∴m的值为45.故选:B.【点睛】本题是探索数的规律的问题,考查了学生归纳抽象能力,关键是从特殊出发得出一般规律。8.C解析:C【分析】结合图形,直接用含a,b的式子表示出,,在将代入,即可求出.【详解】解:由图可知:阴影部分的面积为,△ABC的面积为,又∵,∴,,∴,故选择:C.【点睛】本题主要考查了整式的运算,根据图形,正确的表示出各个图形的面积表达式是解题的关键二、填空题9.-6x2y【分析】根据单项式乘单项式法则,即可求解.【详解】解:2x•(﹣3xy)=-6x2y,故答案是:-6x2y.【点睛】本题主要考查单项式乘单项式,掌握单项式乘单项式法则是解题的关键.10.真命题【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,可得答案【详解】“如果|a|=|b|,那么a=b”的逆命题是“如果a=b,那么|a|=|b|.”“如果a=b,那么|a|=|b|”是真命题,故答案为:真命题.【点睛】本题考查了命题与定理,主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.11.十【分析】设这个多边形有条边,则其内角和为外角和为再根据题意列方程可得答案.【详解】解:设这个多边形有条边,则其内角和为外角和为故答案为:十.【点睛】本题考查的是多边形的内角和与外角和,掌握利用多边形的内角和与外角和定理列一元一次方程解决问题是解题的关键.12.103010【分析】将多项式,提取x后再利用平方差公式分解因式,将x与y的值分别代入每一个因式中计算得到各自的结果,根据阅读材料中取密码的方法,即可得出所求的密码.【详解】∵=x(4x2−y2)=x(2x+y)(2x−y),∴当取x=10,y=10时,各个因式的值是:x=10,2x+y=30,2x−y=10,∴用上述方法产生的密码是:101030.故答案为101030.【点睛】此题考查了因式分解的应用,涉及分解因式的方法有:提公因式法,以及平方差公式法,属于阅读型的新定义题,其中根据阅读材料得出取密码的方法是解本题的关键.13.【分析】把m看做已知数表示出x与y,代入x+y=0计算即可求出m的值.【详解】解:,①+②得:5x=3m+2,解得:x=,把x=代入①得:y=,由x与y互为相反数,得到=0,去分母得:3m+2+9﹣4m=0,解得:m=11,故答案为:11【点睛】此题考查了二元一次方程组的解,以及解二元一次方程组,熟练掌握方程组的解法及相反数的性质是解本题的关键.14.(ab﹣2b)【分析】根据图形的特点,可以把小路的面积看作是一个底是2米,高是b米的平行四边形,根据平行四边形的面积=底×高,长方形的面积=长×宽,用长方形的面积减去小路的面积即可.【详解】解:由题可得,草地的面积是(ab﹣2b)平方米.故答案为:(ab﹣2b).【点睛】本题考查了平移的实际应用.化曲为直是解题的关键.15.16或18【分析】先求出第三边的取值范围,再根据第三根木棒的长为偶数求出第三边的长即可求解.【详解】解:根据三角形的三边关系,得第三根木棒的长大于7-3=4cm而小于7+3=10cm.又第解析:16或18【分析】先求出第三边的取值范围,再根据第三根木棒的长为偶数求出第三边的长即可求解.【详解】解:根据三角形的三边关系,得第三根木棒的长大于7-3=4cm而小于7+3=10cm.又第三根木棒的长是偶数,则应为6cm,8cm.∴所构成的三角形周长为16cm或18cm,故答案为:16或18.【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.三角形任意两边之和大于第三边,任意两边之差小于第三边.16.【分析】先利用三角形中线性质得出面积之间的关系,然后根据几何概率的计算方法求解.【详解】∵D、E、F、G分别是BC、AD、BE、CE的中点,∴是的中线,是的中线,是的中线,是的中线,是的解析:【分析】先利用三角形中线性质得出面积之间的关系,然后根据几何概率的计算方法求解.【详解】∵D、E、F、G分别是BC、AD、BE、CE的中点,∴是的中线,是的中线,是的中线,是的中线,是的中线,∴的面积的面积的面积的面积,同理可得的面积,的面积,连接同理可得:的面积的面积的面积,∴的面积是,∴.【点睛】本题考查了三角形的中线的含义,几何概率,关键是根据概率=相应的面积与总面积之比解答.17.(1);(2)【分析】(1)根据零次幂,负整指数幂,有理数的乘方进行计算即可;(2)根据多项式的乘法以及加减法化简即可.【详解】(1)(2)【点睛】本题考查了零次幂,负整指数解析:(1);(2)【分析】(1)根据零次幂,负整指数幂,有理数的乘方进行计算即可;(2)根据多项式的乘法以及加减法化简即可.【详解】(1)(2)【点睛】本题考查了零次幂,负整指数幂,有理数的乘方,多项式的乘法以及加减法运算,正确的计算是解题的关键.18.(1);(2)【分析】(1)根据公式法因式分解即可;(2)先用十字相乘法分解因式,再用平方差公式分解因式.【详解】(1);(2).【点睛】本题考查了十字相乘法和公式法因式分解,掌握解析:(1);(2)【分析】(1)根据公式法因式分解即可;(2)先用十字相乘法分解因式,再用平方差公式分解因式.【详解】(1);(2).【点睛】本题考查了十字相乘法和公式法因式分解,掌握因式分解的方法是解题的关键.19.(1);(2)【分析】(1)利用代入消元法可进行求解;(2)先把二元一次方程组进行化简,然后再利用加减消元进行求解即可.【详解】解:(1)把②代入①得:,解得:,把代入②得:,∴原方解析:(1);(2)【分析】(1)利用代入消元法可进行求解;(2)先把二元一次方程组进行化简,然后再利用加减消元进行求解即可.【详解】解:(1)把②代入①得:,解得:,把代入②得:,∴原方程组的解为;(2)方程组化简得:②×5+①得:,解得:,把代入②得:,∴原方程组的解为.【点睛】本题主要考查二元一次方程组的解法,熟练掌握二元一次方程组的解法是解题的关键.20.【分析】先求出每个不等式解集,再求出不等式组的解集即可.【详解】解:解不等式,得:解不等式,得:所以不等式组的解集为.【点睛】本题考查解一元一次不等式组,正确求出每一个不等式解集是基解析:【分析】先求出每个不等式解集,再求出不等式组的解集即可.【详解】解:解不等式,得:解不等式,得:所以不等式组的解集为.【点睛】本题考查解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”的原则是解题的关键.三、解答题21.见解析【分析】先利用平行线的性质得∠EMB=∠END,再根据角平分线的定义得到∠EMG=∠EMB,∠ENH=∠END,则∠EMG=∠ENH,然后根据平行线的判定方法可得到MG∥NH.【详解】解析:见解析【分析】先利用平行线的性质得∠EMB=∠END,再根据角平分线的定义得到∠EMG=∠EMB,∠ENH=∠END,则∠EMG=∠ENH,然后根据平行线的判定方法可得到MG∥NH.【详解】解:证明:∵AB∥CD(已知)∴∠EMB=∠END(两直线平行,同位角相等)∵MG平分∠EMB,NH平分∠END(已知),∴∠EMG=∠EMB,∠ENH=∠END(角平分线的定义),∴∠EMG=∠ENH(等量代换)∴MG∥NH(同位角相等,两直线平行).【点睛】本题考查了平行线的判定与性质:性质由形到数,用于推导角的关系并计算;判定由数到形,用于判定两直线平行;性质与判定的已知和结论正好相反,都是角的关系与平行线相关.22.当x小于5时,方案二省钱;当x=5时,两种方案费用相同;当x大于5且不大于12时时,方案一省钱【分析】先根据题意列出方案一的费用:起步价+超过3km的km数×1.6元+回程的空驶费+乘公交的费用解析:当x小于5时,方案二省钱;当x=5时,两种方案费用相同;当x大于5且不大于12时时,方案一省钱【分析】先根据题意列出方案一的费用:起步价+超过3km的km数×1.6元+回程的空驶费+乘公交的费用,再求出方案二的费用:起步价+超过3km的km数×1.6元+返回时的费用1.6x+1.6元的等候费,最后分三种情况比较两个式子的大小.【详解】方案一的费用:7+(x-3)×1.6+0.8(x-3)+4×2=7+1.6x-4.8+0.8x-2.4+8=7.8+2.4x,方案二的费用:7+(x-3)×1.6+1.6x+1.6=7+1.6x-4.8+1.6x+1.6=3.8+3.2x,①费用相同时x的值7.8+2.4x=3.8+3.2x,解得x=5,所以当x=5km时费用相同;②方案一费用高时x的值7.8+2.4x>3.8+3.2x,解得x<5,所以当x<5km方案二省钱;③方案二费用高时x的值7.8+2.4x<3.8+3.2x,解得x>5,所以当x>5km方案一省钱.【点睛】此题考查了应用类问题,解答本题的关键是根据题目所示的收费标准,列出x的关系式,再比较.23.(1);(2);(3)【分析】(1)由二元一次方程组的解可求出答案;(2)任取两个k的值,不妨取k=1,k=2,得到两个方程并组成方程组,解方程组即可;(3)由题意得到方程组,求出k与n的关解析:(1);(2);(3)【分析】(1)由二元一次方程组的解可求出答案;(2)任取两个k的值,不妨取k=1,k=2,得到两个方程并组成方程组,解方程组即可;(3)由题意得到方程组,求出k与n的关系式,求出n的取值范围即可得出答案.【详解】解:(1)把代入方程,得解得:.(2)任取两个的值,不妨取,,得到两个方程并组成方程组.解得:即这个公共解是(3)依题意,得解得.由≤k<,得≤<,解得<≤,当为整数时,.【点睛】本题考查了二次一次方程的解,解二元一次方程组,解一元一次不等式组等知识,熟练掌握二元一次方程的解的定义是解题的关键.24.(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EK∥MN,利用平行线性解析:(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案;(4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可.【详解】(1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°−∠PEF=180°−120°=60°,∴∠MFD=∠MFE−∠DFE=60°−30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如图2,过点E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF−∠KEA,又∵∠DEF=60°.∴∠PDE=60°−45°=15°,故答案为:15°;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA,∵∠FGQ和∠GFA的角平分线GH、FH相交于点H,∴∠QGH=∠FGQ,∠HFA=∠GFA,∵∠DFE=30°,∴∠GFA=180°−∠DFE=150°,∴∠HFA=∠GFA=75°,∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°,∴∠GFL=∠GFA−∠LFA=150°−45°=105°,∴∠RHG=∠QGH=∠FGQ=(180°−105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四边形DEAD′的周长为45cm;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:BC∥DE时,如图5,此时AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF时,如图6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°−∠ACB=90°,∴∠CAK=90°−∠BKA=15°,∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°,∴3t=120,解得:t=40,综上所述,△ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与△DEF的一条边平行.【点睛】本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键.25.(1)不发生变化,∠AEB=135°;(2)不发生变化,∠CED=67.5°;(3)60°或45°【分析】(1)根据直线MN与直线PQ垂直相交于O可知∠AOB=90°,再由AE、BE分别是∠BA解析:(1)不发生变化,∠AEB=135°;(2)不发生
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 甘肃省天水市清水县多校联考2025-2026学年高一上学期1月期末考试地理试卷(含答案)
- 2026届高三生物二轮复习课件:选择题强化练 4.遗传的基本规律与伴性遗传
- 化工企业冬季培训课件
- 钢结构绿色制造技术应用
- 飞机结构专业知识课件
- 2026安徽合肥工业大学管理学院管理学院医疗机器人与智慧医疗健康管理团队科研助理招聘3人备考考试试题及答案解析
- 2026新疆前海集团有限责任公司招聘1人备考考试试题及答案解析
- 2026年上半年黑龙江事业单位联考哈尔滨市招聘592人参考考试题库及答案解析
- 2026江苏苏州人才发展有限公司招聘2人(一)备考考试题库及答案解析
- 2026四川通发广进人力资源管理咨询有限公司AI数据标注员(第三批)招聘备考考试题库及答案解析
- 2025年立体仓库维护服务合同
- BIM技术在建筑施工环境管理中的应用
- 2025全国高考Ⅰ卷第16题说题比赛课件-2026届高三数学二轮复习
- 快消品市场调研分析报告模板
- 装修保护电梯施工技术交底
- 社保专员工作述职报告
- DB15∕T 2385-2021 草原退化评价技术规程
- 焦化厂仪表工岗位考试试卷及答案
- 餐厅充值服务合同范本
- 2025年汽车洗涤器总成行业分析报告及未来发展趋势预测
- 麻疹知识培训内容总结
评论
0/150
提交评论