版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省吴川一中2025-2026学年数学高一上期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.幂函数的图象过点,则()A. B.C. D.2.命题:“,”的否定是()A., B.,C., D.,3.将函数图象向左平移个单位,所得函数图象的一条对称轴的方程是A. B.C. D.4.当时,在同一平面直角坐标系中,与的图象是()A. B.C. D.5.若sinx<0,且sin(cosx)>0,则角是A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角6.y=sin(2x-)-sin2x的一个单调递增区间是A. B.C. D.7.下列不等式成立的是()A.log31C.log23<8.“”是的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件9.已知集合,则()A B.C. D.10.若,,,则的大小关系为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最小值为______.12.计算_________.13.平面向量,,(R),且与的夹角等于与的夹角,则___.14.某同学在研究函数时,给出下列结论:①对任意成立;②函数的值域是;③若,则一定有;④函数在上有三个零点.则正确结论的序号是_______.15.若函数满足:对任意实数,有且,当时,,则时,________16.当一个非空数集G满足“如果,则,,,且时,”时,我们称G就是一个数域,以下关于数域的命题:①0和1都是任何数域的元素;②若数域G有非零元素,则;③任何一个有限数域的元素个数必为奇数;④有理数集是一个数域;⑤偶数集是一个数域,其中正确的命题有______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数是偶函数(1)求实数的值;(2)若函数的最小值为,求实数的值;(3)当为何值时,讨论关于的方程的根的个数18.解下列不等式:(1);(2).19.已知函数f(x)=(1)判断函数f(x)的奇偶性;(2)判断并证明函数f(x)的单调性;(3)解不等式:f(x2-2x)+f(3x-2)<0;20.计算下列各式:(1)(2)21.女排世界杯比赛采用局胜制,前局比赛采用分制,每个队只有赢得至少分,并同时超过对方分时,才胜局;在决胜局(第五局)采用分制,每个队只有赢得至少分,并领先对方分为胜.在每局比赛中,发球方赢得此球后可得分,并获得下一球的发球权,否则交换发球权,并且对方得分.现有甲乙两队进行排球比赛.(1)若前三局比赛中甲已经赢两局,乙赢一局.接下来的每局比赛甲队获胜的概率为,求甲队最后赢得整场比赛的概率;(2)若前四局比赛中甲、乙两队已经各赢两局比赛.在决胜局(第五局)中,两队当前的得分为甲、乙各分,且甲已获得下一发球权.若甲发球时甲赢分的概率为,乙发球时甲赢分的概率为,得分者获得下一个球的发球权.求甲队在个球以内(含个球)赢得整场比赛的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】将点代入中,求解的值可得,再求即可.【详解】因为幂函数的图象过点,所以有:,即.所以,故,故选:C.2、C【解析】根据含有一个量词的命题的否定形式,全称命题的否定是特称命题,可得答案.【详解】命题:“,”是全称命题,它的否定是特称命题:,,故选:C3、C【解析】将函数图象向左平移个单位得到,令,当时得对称轴为考点:三角函数性质4、B【解析】由定义域和,使用排除法可得.【详解】的定义域为,故AD错误;BC中,又因为,所以,故C错误,B正确.故选:B5、D【解析】根据三角函数角的范围和符号之间的关系进行判断即可【详解】∵﹣1≤cosx≤1,且sin(cosx)>0,∴0<cosx≤1,又sinx<0,∴角x为第四象限角,故选D【点睛】本题主要考查三角函数中角的象限的确定,根据三角函数值的符号去判断象限是解决本题的关键6、B【解析】,由,得,,时,为,故选B7、A【解析】由对数的单调性直接比较大小.【详解】因为log31=log2=log24<故选:A.8、A【解析】先看时,是否成立,即判断充分性;再看成立时,能否推出,即判断必要性,由此可得答案.【详解】当时,,即“”是的充分条件;当时,,则或,则或,即成立,推不出一定成立,故“”不是的必要条件,故选:A.9、D【解析】利用元素与集合的关系判断即可.【详解】由集合,即集合是所有的偶数构成的集合.所以,,,故选:D10、A【解析】由指数函数的单调性可知,由对数函数的单调性可知,化简,进而比较大小即可【详解】因为在上是增函数,所以;在上是增函数,所以;,所以,故选:A【点睛】本题考查指数、对数比较大小问题,考查指数函数、对数函数的单调性的应用二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先根据二倍角余弦公式将函数转化为二次函数,再根据二次函数性质求最值.【详解】所以令,则因此当时,取最小值,故答案为:【点睛】本题考查二倍角余弦公式以及二次函数最值,考查基本分析求解能力,属基础题.12、1【解析】,故答案为113、2【解析】,与的夹角等于与的夹角,所以考点:向量的坐标运算与向量夹角14、①②③【解析】由奇偶性判断①,结合①对,,三种情况讨论求值域,判断②,由单调性判断③,由③可知的图像与函数的图像只有两个交点,进而判断④,从而得出答案【详解】①,即,故正确;②当时,,由①可知当时,,当时,,所以函数的值域是,正确;③当时,,由反比例函数的单调性可知,在上是增函数,由①可知在上也是增函数,所以若,则一定有,正确;④由③可知的图像与函数的图像只有两个交点,故错误综上正确结论的序号是①②③【点睛】本题考查函数的基本性质,包括奇偶性,单调性,值域等,属于一般题15、【解析】由,可知.所以函数是周期为4的周期函数.,时,..对任意实数,有,可知函数关于点(1,0)中心对称,所以,又.所以.综上可知,时,.故答案为.点睛:抽象函数的周期性:(1)若,则函数周期为T;(2)若,则函数周期为(3)若,则函数的周期为;(4)若,则函数的周期为.16、①②③④【解析】利用已知条件中数域的定义判断各命题的真假,题目给出了对两个实数的四种运算,要满足对四种运算的封闭,只有一一验证.【详解】①当时,由数域的定义可知,若,则有,即,,故①是真命题;②因为,若,则,则,,则2019,所以,故②是真命题;③,当且时,则,因此只要这个数不为就一定成对出现,所以有限数域的元素个数必为奇数,所以③是真命题;④若,则,且时,,故④是真命题;⑤当时,,所以偶数集不是一个数域,故⑤是假命题;故答案为:①②③④【点睛】关键点点睛:理解数域就是对加减乘除封闭的集合,是解题的关键,一定要读懂题目再入手,没有一个条件是多余的,是难题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)当时,方程有一个根;当时,方程没有根;当或或时,方程有两个根;当时,方程有三个根;当时,方程有四个根【解析】(1)利用偶函数满足,求出的值;(2)对函数变形后利用二次函数的最值求的值;(3)定义法得到的单调性,方程通过换元后得到的根的情况,通过分类讨论最终求出结果.【小问1详解】由题意得:,即,所以,其中,∴,解得:【小问2详解】,∴,故函数的最小值为,令,故的最小值为,等价于,解得:或,无解综上:【小问3详解】由,令,,有由,有,,可得,可知函数为增函数,故当时,函数单调递增,由函数为偶函数,可知函数的增区间为,减区间为,令,有,方程(记为方程①)可化为,整理为:(记为方程②),,当时,有,此时方程②无解,可得方程①无解;当时,时,方程②的解为,可得方程①仅有一个解为;时,方程②的解为,可得方程①有两个解;当时,可得或,1°当方程②有零根时,,此时方程②还有一根为,可得此时方程①有三个解;2°当方程②有两负根时,可得,不可能;3°当方程②有两正根时,可得:,又由,可得,此时方程①有四个根;4°当方程②有一正根一负根时,,可得:或,又由,可得或,此时方程①有两个根,由上知:当时,方程①有一个根;当时,方程①没有根;当或或时,方程①有两个根;当时,方程①有三个根;当时,方程①有四个根【点睛】对于复合函数根的个数问题,要用换元法来求解,通常方法会用到根的判别式,导函数,基本不等式等.18、(1)或(2)【解析】【小问1详解】(1)因为,所以方程有两个不等实根x1=-1,x2=-3.所以原不等式的解集为或.【小问2详解】(2)因为,所以方程有两个相等实根x1=x2=所以原不等式的解集为.19、(1)奇函数(2)单调增函数,证明见解析(3)【解析】(1)按照奇函数的定义判断即可;(2)按照单调性的定义判断证明即可;(3)由单调递增解不等式即可.【小问1详解】易知函数定义域R,所以函数为奇函数.【小问2详解】设任意x1,x2∈R且x1<x2,f(x1)-f(x2)==∵x1<x2,∴,∴f(x1)<f(x2),∴f(x)是在(-∞,+∞)上是单调增函数【小问3详解】∵f(x2-2x)+f(3x-2)<0,又∵f(x)是定义在R上的奇函数且在(-∞,+∞)上单调递增,∴f(x2-2x)<f(2-3x),∴x2-2x<2-3x,∴-2<x<1.不等式的解集是20、(1);(2).【解析】(1)运用指数幂运算性质进行计算即可;(2)运用对数的运算公式,结合换底公式进行求解即可.【小问1详解】原式;【小问2详解】原式.21、(1);(2)【解析】(1)先确定甲队最后赢得整场比赛的情况,再分别根据独立事件概率乘法公式求解,最后根据互斥事件概率加法公式得结果;(2)先根据比赛规则确定x的取值,再确定甲赢得整场比赛的情况,最后根据独立事件概率乘法公式以及互斥事件概率加法公式得结果.【详解】(1)甲队最后赢得整场比赛的情况为第四局赢或第四局输第五局赢,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护理实践中的伦理困境
- 护理教学与健康管理结合
- 2025年社区环保宣传活动 绿色行动我参与
- 中国战略新通道:激活南太平洋岛屿链的“低空-海洋-旅娱”经济走廊
- 在线定制化家纺趋势
- 地下水污染治理-第1篇
- 基本题库复合题库及答案
- 2026 年中职酒店管理(酒店管理常识)试题及答案
- 兽医题目及答案
- 办公设备采购合同协议2025
- 乡镇卫生院检验科检验质量控制管理制度
- 【个案工作介入青少年厌学问题研究12000字(论文)】
- 村级事务监督工作报告
- T/TAC 10-2024机器翻译伦理要求
- 兄妹合伙买房协议书
- 家庭农场项目可行性报告
- 施工升降机防护方案
- 温室大棚可行性报告修改版
- JISG3141-2017冷轧钢板及钢带
- 瑞加诺生注射液-药品临床应用解读
- 2025中医体重管理临床指南
评论
0/150
提交评论