2024年新高考数学一轮复习知识梳理与题型归纳第64讲求概率统计的综合问题学生版_第1页
2024年新高考数学一轮复习知识梳理与题型归纳第64讲求概率统计的综合问题学生版_第2页
2024年新高考数学一轮复习知识梳理与题型归纳第64讲求概率统计的综合问题学生版_第3页
2024年新高考数学一轮复习知识梳理与题型归纳第64讲求概率统计的综合问题学生版_第4页
2024年新高考数学一轮复习知识梳理与题型归纳第64讲求概率统计的综合问题学生版_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第64讲求概率统计的综合问题

思维导图

题型1:概率模块内知识交汇命题

4题型2:概率与统计、统计案例的交汇命题

求概率统计的综合问题

题型3:概率与函数、数列等综合问题

题型归纳

题型1概率模块内知识交汇命题

【例1-1】高考改革新方案,不分文理科,高考成绩实行“3+3”的构成模式,第一个“3”是语文、

数学、外语,每门满分150分,第二个“3”由考生在思想政治、历史、地理、物理、化学、生物6个科目

中自主选择其中3个科目参加等级性考试,每门满分100分,高考录取成绩卷面总分满分750分.为了调

查学生对物理、化学、生物的选考情况,将“某市某一届学生在物理、化学、生物三个科目中至少选考一

科的学生”记作学生群体S,从学生群体S中随机抽取了50名学生进行调查,他们选考物理,化学,生物

的科目数及人数统计如下表:

选考物理、化学、生物的科目数123

人数52520

(1)从所调查的50名学生中任选2名,求他们选考物理、化学、生物科目数量不相等的概率:

(2)从所调查的50名学生中任选2名,记乃表示这2名学生选考物理、化学、生物的科目数量之差的

绝对值,求随机变量才的分布列和数学期望;

(3)将频率视为概率,现从学生群体S中随机抽取4名学生,记其中恰好选考物理、化学、生物中的两

科目的学生数记作匕求事件2”的概率.

【跟踪训练1-1】2016年微信用户数量统计显示,微信注比用户数量已经突破9.27亿.微信用户平均

年龄只有26岁,97.7%的用户在50岁以下,86.2%的用户在18〜36岁之间.为调查大学生这个微信用户群

体中每人拥有微信群的数量,现右从北京大学生中随机抽取10()位同学进行了抽样调查,结果如下:

微信群数量频数频率

0至5个00

6至10个300.3

11至至个300.3

16至20个clC

20个以上5b

总计1001

(1)求a,b,c的值:

(2)若从100位同学中随机抽取2人,求这2人中恰有1人微信群个数超过15个的概率;

(3)以这100个人的样本数据估计北京市的总体数据且以频率估计概率,若从全市大学生中随机抽取3

人,记X表示抽到的是微信群个数超过15个的人数,求%的分布列和数学期望爪心.

【跟踪训练1-2】为了预防某种流感扩散,某校医务室采取枳极的处理方式,对感染者进行短暂隔离直

到康复.假设某班级已知6位同学中有1位同学被感染,需要通过化验血液来确定被感染的同学,血液化

验结果呈阳性即被感染,呈阴性即未被感染.下面是两种化验方案.

方案甲:逐个化验,直到能确定被感染的同学为止.

方案乙:先任取3个同学,将他们的血液混在一起化验,若结果呈阳性则表明被感染同学为这3位中

的I位,后再逐个化验,直到能确定被感染的同学为止;若结果呈阴性,则在另外3位同学中逐个检测.

(1)求方案甲所需化验次数等于方案乙所需化验次数的概率;

(2)H表示方案甲所需化验次数,f表示方案乙所需化验次数,假设每次化验的费用都相同,请从经

济角度考虑哪种化验的方案最佳.

【名师指导】

高考常将求概率与等可能事件、互斥事件、相互独立事件、超几何分布、二项分布等交汇在一起进行

考查,因此在解答此类题时,准确把题中所涉及的事件进行分解,明确所求问题所属的事件类型是关键.特

别是要注意挖掘题目中的陷含条件.

题型2概率与统计、统计案例的交汇命题

【例2-1]市教育部门为研究高中学生的身体素质与课外体育锻炼时间的关系,对该市某校200名高中

学生的课外体育锻炼平均每天锻炼的时间进行了调查,数据如下表:

平均每天

锻炼的时[0,10)[10,20)[20,30)[30,40)[40,50)[50,60]

间(分钟)

总人数203644504010

将学生日均课外体育锻炼时间在[40,60]内的学生评价为“课外体育达标”.

(1)请根据上述表格中的统计数据填写下面2X2列联表,并通过计算判断是否能在犯错误的概率不超

过0.01的前提下认为“课外体育达标”与性别有关;

课外体育不达标课外体育达标总计

女20110

总计

(2)从上述课外体育不达标的学生中,按性别用分层抽样的方法抽取10名学牛.,再从这10名学生中随

机抽取3人了解他们锻炼时间偏少的原因,记所抽取的3人中男生的人数为随机变量X求X的分布列和数

学期望;

(3)将上述调查所得到的频率视为概率来估计全市的情况,现在从该市所有高中学生中抽取4名学生,

求其中恰好有2名学生课外体育达标的概率.

参考公式:*=(a+以吉c)@+G,其中“="+”+"+"

参考数据:

夕(尤力儿)0.100.050.0250.0100.0050.001

kn2.7063.8415.0246.6357.87910.828

【跟踪训练2-1】某公司为了提高利润,从2012年到2018年每年都对生产环节的改进进行投资,投资

金额x(单位:万元)与年利润增长量y(单位:万元)的数据如表:

年份2012201320142015201620172018

投资金额力万元4.55.05.56.06.57.07.5

年利润增长量〃万元6.07.07.48.18.99.611.1

(1)请用最小二乘法求出y关于*的回归直线方程.如果2019年该公司计划对生产环节的改进的投资

金额为8万元,估计该公司在该年的年利润增长量为多少?(结果保留两位小数)

(2)现从2012年到2018年这7年中抽出3年进行调查,记4=年利润增长量一投资金额,设这3年中

万元的年份数为f,求随机变量4的分布列与期望.

参考公式:b=---------=-----=---------------,a=y-bx.

加一“人一〃7

/-!

参考数据:Zx,y=359.6,£^=259.

/=!/=!

【跟踪训练2-2】成都市现在已是拥有1400多万人口的城市,机动车保有量已达450多万辆,成年人

中约40%拥有机动车驾驶证.为了解本市成年人的交通安全意识情况,某中学的同学利用国庆假期进行了一

次全市成年人安全知识抽样调查.先根据是否拥有驾驶证,用分层抽样的方法抽取了200名成年人,然后

对这200人进行问卷调查.这200人所得的分数都分布在[30,100]范围内,规定分数在80以上(含80)的为

“具有很强安全意识”,所得分数的频率分布直方图如图所示.

拥有驾驶证没有驾驶证总计

具有很强安全意识

不具有很强安全意识58

总计200

⑴补全上面的2X2列联表,并判断能否有超过95%的把握认为“‘具有很强安全意识'与拥有驾驶证”

有关?

(2)将上述调查所得的频率视为概率,现从全市成年人中随巩抽取4人,记“具有很强安全意识”的人

数为篇求才的分布列及数学期望.

附表及公式:>=/_|_人、/竺人上人,其中〃=a+Z?+c+。.

(a十〃)(。十力(a+a)

0.150.1()0.050.0250.0100.0050.001

Ab2.0722.7063.8415.0246.6357.87910.828

【名师指导】

~~概率与统计、统计案例交汇问题的考查离不开图表(频率分布直方图、茎叶图、折线图、频数分布表等),

解决此类问题重:在审图表、明数据,能从所给图表中正确提取解题所需要的信息是解决问题的关键,然后

根据信息•步步实现图表数据与数学符号语言的转化,建立数学模型解决问题.

题型3概率与函数、数列等综合问题

【例37】为响应绿色出行,某市在推出共享单车后,乂推出新能源分时租赁汽车.其中一款新能源分

时租赁汽车,每次租车收费的标准由两部分组成:①根据行驶里程数按1元/公里计费;②行驶时间不超过

40分钟时按0.12元/分计费,超过40分钟时,超出部分按0.20元/分计费.已知张先生家离上班地点15

公里,每天租用该款汽车上、下班各一次.由于堵车、红绿灯等因素,每次路上开车花费的时间乂单位:

分)是一个随机变量.现统计了张先生50次路上开车花费的时间,在各时间段内的频数分布情况如下表所

示.

时间〃分(20,30](30,40](40,50](50,60]

频数2182010

将频率视为概率,每次路上开车花费的时间视为用车时间.

(1)写出张先生一次租车费用y(单位:元)与用车时间。(单位:分)的函数关系式;

(2)若张先生一次开车时间不超过40分为“路段畅通”,设S表示3次租用新能源分时租赁汽车中“路

段畅通”的次数,求f的分布列和期望;

(3)若公司每月给1000元的交通补助,请估计张先生每月(按22天计算)的交通补助是否足够让张先

生上、下班租用新能源分时租赁汽车?并说明理由.(同一时段的时间用该区间的中点值代表)

【例3-2】为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试

验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施

以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4

只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲

药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得一1分;若施以乙药的白鼠治愈且施以甲药的

白鼠未治愈则乙药得1分,甲药得一1分;若都治愈或都未治愈则两种药均得()分.甲、乙两种药的治愈率

分别记为。和万,一轮试验中甲药的得分记为X

(1)求/的分布列;

(2)若甲药、乙药在试验开始时都赋予4分,A(2=0,1,8)表示“甲药的累计得分为,时,最终

认为甲药比乙药更有效”的概率,则R=0,9=1,pi=ap$-\~\~bpi+cp2Ki=\,2,…,7),其中a=〃(¥=

—1),b=P{X=^),c=P(X=l).假设。=0.5,8=0.8.

①证明:{“+LR}(1=0,1,2,…,7)为等比数列;

②求R,并根据。的值解释这种试验方案的合理性.

【跟踪训练3-1】计划在某水库建一座至多安装3台发电机的水电站.过去5()年的水文资料显示,水

库年入流量年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上.其中,不足80

的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段

的频率作为相应段的概率,并假设各年的入流量相互独立..

(1)求未来4年中,至多有1年的年入流量超过120的概率!

(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量乃限制,并有如下

关系:

年入流量二40</8080W辰120»120

发电机最多

123

可运行台数

若某台发电机运行,则该台发电机年利润为5000万元;着某台发电机未运行,则该台发电机年亏损

800万元.欲使水电站年总利润的均值达到最大,应安装发电机多少台?

【跟踪训练3-2】如图是某小区2017年1月至2018年1月当月在售二手房均价(单位:万元/米?)的散

点图.(图中月份代码1〜13分别对应2017年1月〜2018年1月)

当月在售二手房均价y

1.04

1.02

1.00

0.98

0.96

0.94

012345678910111213月份代月%

根据散点图选择尸=&+矩和y=c+Mnx两个模型进行拟合,经过数据处理得到两个回归方程分别为

y=0.9369+0.02856和尸0.9554+0.03061nx,并得到一些统计量的值如下表所示.

y=0.9369+0.028尸0.9554+0.03061nx

蜕%—PM

/=>0.0005910.000164

卅一)2

y0.005050

⑴请利用相关指数始判断哪个模型的拟合效果更好.

(2)某位购房者拟于2018年6月份购买这个小区勿(70W/7W160)平方米的二手房(此房为其家庭首套

房).若购房时该小区所有住房的房产证均已满2年但未满5年.请你利用(1)中拟合效果更好的模型解决

以下问题.

①估算该购房者应支付的购房金额;(购房金额=房款+税费,房屋均价精确到0.0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论