版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省绵阳巿三台中学2025年高一上数学期末达标检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数α是()A.1 B.4C.1或4 D.2或42.下图是函数的部分图象,则()A. B.C. D.3.设函数的定义域,函数的定义域为,则()A. B.C. D.4.已知角的始边与轴非负半轴重合,终边过点,则()A.1 B.-1C. D.5.已知函数f(x)=(a∈R),若函数f(x)在R上有两个零点,则a的取值范围是()A.(-∞,-1) B.(-∞,1)C.(-1,0) D.[-1,0)6.已知定义在上的奇函数,满足,当时,,则函数在区间上的所有零点之和为()A. B.C. D.7.已知直线与圆交于A,两点,则()A.1 B.C. D.8.已知函数,若存在R,使得不等式成立,则实数的取值范围为()A. B.C. D.9.命题:的否定为()A. B.C. D.10.已知:,:,若是的必要不充分条件,则实数的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知是定义在上的偶函数,且当时,,则当时,___________.12.已知幂函数f(x)的图象过点(4,2),则f=________.13.经过原点并且与直线相切于点的圆的标准方程是__________14.的单调增区间为________.15.当时,函数取得最大值,则___________.16.第24届冬季奥林匹克运动会简称“北京—张家口冬奥会”,将于2022.2.4~2022.2.20在中华人民共和国北京市和张家口市联合举行.某公司为迎接冬奥会的到来,设计了一款扇形的纪念品,扇形圆心角为2,弧长为12cm,则扇形的面积为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,(1)当时,求函数的值域;(2)若恒成立,求实数的取值范围18.王先生发现他的几位朋友从事电子产品的配件批发,生意相当火爆.因此,王先生将自己的工厂转型生产小型电子产品的配件.经过市场调研,生产小型电子产品的配件.需投入固定成本为2万元,每生产万件,还需另投入万元,在年产量不足8万件时,(万元);在年产量不低于8万件时,(万元).每件产品售价为4元.通过市场分析,王先生生产的电子产品的配件都能在当年全部售完.(1)写出年利润(万元)关于年产量(万件)的函数解析式;(2)求年产量为多少万件时,王先生在电子产品的配件的生产中所获得的年利润最大?并求出年利润的最大值?19.已知平面向量.(1)求与的夹角的余弦值;(2)若向量与互相垂直,求实数的值.20.—条光线从点发出,经轴反射后,经过点,求入射光线和反射光线所在的直线方程.21.记函数=的定义域为A,g(x)=(a<1)的定义域为B.(1)求A;(2)若x∈A是x∈B的必要不充分条件,求实数a的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据扇形的弧长公式和面积公式,列出方程组,求得的值,即可求解.【详解】设扇形所在圆的半径为,由扇形的周长是6,面积是2,可得,解得或,又由弧长公式,可得,即,当时,可得;当时,可得,故选:C.2、B【解析】由图象求出函数的周期,进而可得的值,然后逆用五点作图法求出的值即可求解.【详解】解:由图象可知,函数的周期,即,所以,不妨设时,由五点作图法,得,所以,所以故选:B.3、B【解析】求出两个函数的定义域后可求两者的交集.【详解】由得,由得,故,故选:B.【点睛】本题考查函数的定义域和集合的交,函数的定义域一般从以下几个方面考虑:(1)分式的分母不为零;(2)偶次根号(,为偶数)中,;(3)零的零次方没有意义;(4)对数的真数大于零,底数大于零且不为1.4、D【解析】利用三角函数的坐标定义求出,即得解.【详解】由题得.所以.故选:D【点睛】本题主要考查三角函数的坐标定义,意在考查学生对这些知识的理解掌握水平.5、D【解析】当x>0时,f(x)有一个零点,故当x≤0时只有一个实根,变量分离后进行计算可得答案.【详解】当x>0时,f(x)=3x-1有一个零点x=.因此当x≤0时,f(x)=ex+a=0只有一个实根,∴a=-ex(x≤0),函数y=-ex单调递减,则-1≤a<0.故选:D【点睛】本题考查由函数零点个数确定参数的取值,考查指数函数的性质,属于基础题.6、D【解析】推导出函数是周期为的周期函数,且该函数的图象关于直线对称,令,可得出,转化为函数与函数图象交点横坐标之和,数形结合可得出结果.【详解】由于函数为上的奇函数,则,,所以,函数是周期为的周期函数,且该函数的图象关于直线对称,令,可得,则函数在区间上的零点之和为函数与函数在区间上图象交点横坐标之和,如下图所示:由图象可知,两个函数的四个交点有两对关于点对称,因此,函数在区间上的所有零点之和为.故选:D.【点睛】本题考查函数零点之和,将问题转化为两个函数的交点,结合函数图象的对称性来求解是解答的关键,考查数形结合思想的应用,属于中等题.7、C【解析】用点到直线距离公式求出圆心到直线的距离,进而利用垂径定理求出弦长.【详解】圆的圆心到直线距离,所以.故选:C8、D【解析】利用函数的奇偶性与单调性把函数不等式变形,然后由分离参数法转化为求函数的最值【详解】是奇函数,且在上是增函数,因此不等式可化为,所以,,由得的最小值是2,所以故选:D9、B【解析】根据全称命题的否定是特称命题判断可得.【详解】解:命题:为全称量词命题,其否定为;故选:B10、C【解析】求解不等式化简集合,,再由题意可得,由此可得的取值范围【详解】解:由,即,解得或,所以或,,命题是命题的必要不充分条件,,则实数的取值范围是故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】设,则,求出的表达式,再由即可求解.【详解】设,则,所以,因为是定义在上的偶函数,所以,所以当时,故答案为:.12、【解析】根据图象过点的坐标,求得幂函数解析式,再代值求得函数值即可.【详解】设幂函数为y=xα(α为常数).∵函数f(x)的图象过点(4,2),∴2=4α,∴α=,∴f(x)=,∴f=.故答案为:.【点睛】本题考查幂函数解析式的求解,以及幂函数函数值的求解,属综合简单题.13、【解析】设圆心坐标,则,,,根据这三个方程组可以计算得:,所以所求方程为:点睛:设出圆心与半径,根据题意列出方程组,解出圆心和半径即可14、【解析】求出给定函数的定义域,由对数函数、正弦函数单调性结合复合函数单调性求解作答.【详解】依题意,,则,解得,函数中,由得,即函数在上单调递增,当时,函数在上单调递增,又函数在上单调递增,所以函数的单调增区间为.故答案为:【点睛】关键点睛:函数的单调区间是定义域的子区间,求函数的单调区间,正确求出函数的定义域是解决问题的关键.15、##【解析】由辅助角公式,正弦函数的性质求出,,再根据两角和的正切和公式,诱导公式求.【详解】(其中,),当时,函数取得最大值∴,,即,,所以,.故答案为:.16、36【解析】首先根据弧长公式求出扇形的半径,再根据扇形的面积公式计算可得;【详解】解:依题意、cm,所以,即cm,所以;故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)采用换元,令,当时,把函数转化为二次函数,即可求出答案.(2)采用换元,令,即在恒成立,即可求出答案.【小问1详解】函数,令,当时,,的值域为.【小问2详解】,恒成立,只需:在恒成立;令:则得.18、(1);(2)当年产量为13万件时,王先生在电子产品的配件的生产中所获得的年利润最大,年利润的最大值为6万元.【解析】(1)根据题意列出和时的解析式即可;(2)分别求和时的最大利润,比较两个利润的大小即可.【小问1详解】∵每件商品售价为4元,则万件商品销售收入为万元,当时,;当时,.∴;【小问2详解】若,则.当时,取得最大值万元.若,则,当且仅当,即时,取得最大值6万元.∵,∴当年产量为13万件时,王先生在电子产品的配件的生产中所获得的年利润最大.年利润的最大值为6万元.19、(1);(2)【解析】(1)由数量积公式,得夹角余弦值为;(2),所以。试题解析:(1)∵向量,∴.∴向量与的夹角的余弦值为.(2)∵向量与互相垂直,∴.又.∴.点睛:本题考查数量积的应用。数量积公式,学生要熟练掌握数量积公式的应用,能够转化到求夹角公式。两向量垂直,则数量积为零。本题为基础题型,考查公式的直接应用。20、入射光线所在直线方程为2x-y-4=0,反射光线所在直线方程为2x+y-4=0【解析】如图所示,作A点关于x轴的对称点A′,显然,A′坐标为(3,-2),连接A′B,则A′B所在直线即为反射光线由两点式可得直线A′B的方程为,即2x+y-4=0.同理,点B关于x轴的对称点为B′(-1,-6
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026河南南阳理工学院人才招聘30人考试备考题库及答案解析
- 2026年第五师八十八团国家级公益林护林员招聘(3人)考试备考试题及答案解析
- 2026山东省淄博第十一中学招聘11人考试参考题库及答案解析
- 2026湖南长沙市雨花区育新第二小学春季合同制教师招聘考试参考试题及答案解析
- 中冶交通2026届校园招聘考试备考试题及答案解析
- 2026年怒江州贡山县公安局招聘警务辅助人员(5人)笔试备考题库及答案解析
- 2026湖北武汉市华中农业大学其他专业技术人员招聘15人笔试备考题库及答案解析
- 压伤患者的并发症护理与处理
- 智能机器全景解析
- 2026北京协和医院康复医学科合同制物理因子治疗(理疗)技术员招聘考试备考题库及答案解析
- 食品添加剂生产质量管理手册(标准版)
- 【初中 历史】2025-2026学年统编版八年级历史上册期末材料分析题练习
- 2026年2026年健康饮食防失眠培训课件
- 广西华盛集团廖平糖业有限责任公司招聘笔试题库2026
- 广东省深圳市福田区五校2024-2025学年九年级上学期期末(一模)化学试题(含答案)
- 承包商安全考核实施细则
- 《马原》期末复习资料
- YY∕T 0636.3-2021 医用吸引设备 第3部分:以真空或正压源为动力的吸引设备(高清正版)
- 北京市西城区2021届英语八年级(上)期末考试模拟试题
- 电气工程课程设计反激型开关电源设计
- 二、自然科学类科研积分的计算方法与标准
评论
0/150
提交评论