版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
清华大学附中2025年高一上数学期末调研试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知全集U={1,2,3,4,5,6},集合A={2,3,5,6},集合B={1,3,4,6},则集合A∩(∁UB)=()A.{2,5} B.{3,6}C.{2,5,6} D.{2,3,5,6}2.如图,在正四棱柱中,,点为棱的中点,过,,三点的平面截正四棱柱所得的截面面积为()A.2 B.C. D.3.已知α是第三象限的角,且,则()A. B.C. D.4.某公司位员工的月工资(单位:元)为,,…,,其均值和方差分别为和,若从下月起每位员工的月工资增加元,则这位员工下月工资的均值和方差分别为A., B.,C, D.,5.设,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件6.在边长为3的菱形中,,,则=()A. B.-1C. D.7.已知扇形的面积为,扇形圆心角的弧度是,则扇形的周长为()A. B.C. D.8.为了得到函数的图像,只需将函数的图像()A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位9.“,”是“函数的图象关于点中心对称”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.半径为2,圆心角为的扇形的面积为()A. B.C. D.2二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,x0R,使得,则a=_________.12.经过点且在轴和轴上的截距相等的直线的方程为__________13.某品牌笔记本电脑的成本不断降低,若每隔4年价格就降低,则现在价格为8100元的笔记本电脑,12年后的价格将降为__________元14.已知函数,则满足的实数的取值范围是__15.若函数在上单调递增,则a的取值范围为______16.若函数,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设全集实数集,,(1)当时,求和;(2)若,求实数的取值范围18.已知定义在上的奇函数满足:①;②对任意的均有;③对任意的,,均有.(1)求的值;(2)证明在上单调递增;(3)是否存在实数,使得对任意的恒成立?若存在,求出的取值范围;若不存在,请说明理由.19.某保险公司决定每月给推销员确定具体的销售目标,对推销员实行目标管理.销售目标确定的适当与否,直接影响公司的经济效益和推销员的工作积极性,为此,该公司当月随机抽取了50位推销员上个月的月销售额(单位:万元),绘制成如图所示的频率分布直方图:(1)①根据图中数据,求出月销售额在小组内的频率;②根据直方图估计,月销售目标定为多少万元时,能够使的推销员完成任务?并说明理由;(2)该公司决定从月销售额为和的两个小组中,选取2位推销员介绍销售经验,求选出的推销员来自同一个小组的概率.20.中国茶文化博大精深,小明在茶艺选修课中了解到,不同类型的茶叶由于在水中溶解性的差别,达到最佳口感的水温不同.为了方便控制水温,小明联想到牛顿提出的物体在常温环境下温度变化的冷却模型:如果物体的初始温度是,环境温度是,则经过时间(单位:分)后物体温度将满足:,其中为正的常数.小明与同学一起通过多次测量求平均值的方法得到初始温度为98℃的水在19℃室温中温度下降到相应温度所需时间如表所示:从98℃下降到90℃所用时间1分58秒从98℃下降到85℃所用时间3分24秒从98℃下降到80℃所用时间4分57秒(1)请依照牛顿冷却模型写出冷却时间(单位:分)关于冷却水温(单位:℃)函数关系,并选取一组数据求出相应的值(精确到0.01).(2)“碧螺春”用75℃左右的水冲泡可使茶汤清澈明亮,口感最佳.在(1)的条件下,水煮沸后在19℃室温下为获得最佳口感大约冷却___________分钟左右冲泡,请在下列选项中选择一个最接近的时间填在横线上,并说明理由.A.5B.7C.10(参考数据:,,,,)21.如图,为等边三角形,平面,,,为的中点.(Ⅰ)求证:平面;(Ⅱ)求证:平面平面.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】先求出∁UB,再求A∩(∁UB)即可.【详解】解:由已知∁UB={2,5},所以A∩(∁UB)={2,5}.故选:A.【点睛】本题考查集合的交集和补集的运算,是基础题.2、D【解析】根据题意画出截面,得到截面为菱形,从而可求出截面的面积.【详解】取的中点,的中点,连接,因为该几何体为正四棱柱,∴故四边形为平行四边形,所以,又,∴,同理,且,所以过,,三点平面截正四棱柱所得的截面为菱形,所以该菱形的面积为.故选:D3、B【解析】由已知求得,则由诱导公式可求.【详解】α是第三象限的角,且,,.故选:B.4、D【解析】均值为;方差为,故选D.考点:数据样本的均值与方差.5、A【解析】解绝对值不等式求解集,根据充分、必要性的定义判断题设条件间的充分、必要关系.【详解】由,可得,∴“”是“”的充分而不必要条件.故选:A.6、C【解析】运用向量的减法运算,表示向量,再运用向量的数量积运算,可得选项.【详解】.故选:C.【点睛】本题考查向量的加法、减法运算,向量的线性表示,向量的数量积运算,属于基础题.7、A【解析】根据扇形的面积公式和弧长的计算公式,求得弧长和半径,即可求得结果.【详解】设扇形的半径为,弧长为.由题意:,解得,所以扇形的周长为,故选:A.【点睛】本题考查扇形的弧长和面积公式,属基础题.8、A【解析】根据函数平移变换的方法,由即,只需向右平移个单位即可.【详解】根据函数平移变换,由变换为,只需将的图象向右平移个单位,即可得到的图像,故选A.【点睛】本题主要考查了三角函数图象的平移变换,解题关键是看自变量上的变化量,属于中档题.9、A【解析】先求出函数的图象的对称中心,从而就可以判断.【详解】若函数的图象关于点中心对称,则,,所以“,”是“函数的图象关于点中心对称”的充分不必要条件故选:A10、D【解析】利用扇形的面积公式即得.【详解】由题可得.故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由基本不等式及二次函数的性质可得,结合等号成立的条件可得,即可得解.【详解】由题意,,因为,当且仅当时,等号成立;,当且仅当时,等号成立;所以,又x0R,使得,所以,所以.故答案为:.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方12、或【解析】根据题意将问题分直线过原点和不过原点两种情况求解,然后结合待定系数法可得到所求的直线方程【详解】(1)当直线过原点时,可设直线方程为,∵点在直线上,∴,∴直线方程为,即(2)当直线不过原点时,设直线方程,∵点在直线上,∴,∴,∴直线方程为,即综上可得所求直线方程为或故答案为或【点睛】在求直线方程时,应先选择适当形式的直线方程,并注意各种形式的方程所适用的条件,由于截距式不能表示与坐标轴垂直或经过原点的直线,故在解题时若采用截距式,应注意分类讨论,判断截距是否为零,分为直线过原点和不过原点两种情况求解.本题考查直线方程的求法和分类讨论思想方法的运用13、2400【解析】由题意直接利用指数幂的运算得到结果【详解】12年后的价格可降为81002400元故答案为2400【点睛】本题考查了指数函数模型的应用,考查了推理能力与计算能力,属于基础题14、【解析】分别对,分别大于1,等于1,小于1的讨论,即可.【详解】对,分别大于1,等于1,小于1讨论,当,解得当,不存在,当时,,解得,故x的范围为【点睛】本道题考查了分段函数问题,分类讨论,即可,难度中等15、【解析】根据函数的单调性得到,计算得到答案.【详解】函数在上单调递增,则故答案为:【点睛】本题考查了函数的单调性,意在考查学生的计算能力.16、##0.5【解析】首先计算,从而得到,即可得到答案.【详解】因为,所以.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】把代入集合B,求出集合B的解集,再根据交集和并集的定义进行求解;因为,可知,求出,再根据子集的性质进行求解;【详解】(1)由题意,可得,当时,,则,若,则或,、当时,,满足A.当时,,又,则综上,【点睛】本题主要考查了交集和并集的定义以及子集的性质,其中解答中熟记集合的运算,以及合理分类讨论是解答的关键,着重考查了分类讨论思想,以及推理与运算能力,属于基础题.18、(1)0;(2)详见解析;(3)存在,.【解析】(1)利用赋值法即求;(2)利用单调性的定义,由题可得,结合条件可得,即证;(3)利用赋值法可求,结合函数的单调性可把问题转化为,是否存在实数,使得或在恒成立,然后利用参变分离法即求.【小问1详解】∵对任意的,,均有,令,则,∴;【小问2详解】,且,则又,对任意的均有,∴,∴∴函数在上单调递增.【小问3详解】∵函数为奇函数且在上单调递增,∴函数在上单调递增,令,可得,令,可得,又,∴,又函数在上单调递增,在上单调递增,∴由,可得或,即是否存在实数,使得或对任意的恒成立,令,则,则对于恒成立等价于在恒成立,即在恒成立,又当时,,故不存在实数,使得恒成立,对于对任意的恒成立,等价于在恒成立,由,可得在恒成立,又,在上单调递减,∴,综上可得,存在使得对任意的恒成立.【点睛】关键点点睛:本题第二问的关键是配凑,然后利用条件可证;第三问的关键是转化为否存在实数,使得或在恒成立,再利用参变分离法解决.19、(1)①;②17,理由见解析(2)【解析】(1)①利用各组的频率和为1求解,②由题意可得的推销员不能完成该目标,而前两组的频率和,前三组的频率和为,所以月销售目标应在第3组,从而可求得结果,(2)由频率分布直方图结合题意可得待选的推销员一共有4人,然后利用列举法求解概率【小问1详解】①月销售额在小组内的频率为.②若要使的推销员能完成月销售额目标,则意味着的推销员不能完成该目标.根据题图所示的频率分布直方图知,和两组的频率之和为0.18,故估计月销售额目标应定为(万元).【小问2详解】根据直方图可知,月销售额为和的频率之和为0.08,由可知待选的推销员一共有4人.设这4人分别为,则样本空间为{},一共有6种情况其中2人来自同一组的情况有2种所以选出的推销员来自同一个小组的概率.20、(1);(2)大约冷却分钟,理由见解析.【解析】(1)根据求得冷却时间(单位:分)关于冷却水温(单位:℃)的函数关系,结合对数运算求得.(2)根据(1)中的函数关系式列方程,由此求得冷却时间.【小问1详解】依题意,,,,,,.,依题意,则.若选:从98℃下降到90℃所用时间:1分58秒,即分,则若选:从98℃下降到85℃所用时间:3分24秒,即分,若选:从98℃下降到80℃所用时间:4分57秒,即分,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高职(针织技术与针织服装)针织服装制版测试题及答案
- 2025年大学第一学年(地理学)自然地理学基础阶段测试试题及答案
- 2025年大学大三(土木工程)混凝土结构设计试题及答案
- 2025-2026年高一化学(基础复习)上学期考题及答案
- 2025年大学大二(材料科学与工程)材料力学性能阶段测试试题及答案
- 2025年大学(药事管理)药品经营质量管理期末试题及答案
- 小学二年级(语文)2027年下学期期末知识巩固卷
- 2025美容师美甲案例实战题库及答案
- 深度解析(2026)《GBT 18210-2000晶体硅光伏(PV)方阵 I-V特性的现场测量》
- 深度解析(2026)《GBT 18052-2000套管、油管和管线管螺纹的测量和检验方法》
- 2026年云南中烟工业有限责任公司毕业生招聘(502人)笔试考试参考试题及答案解析
- 2025江苏苏州大学劳务派遣制人员招聘3人(第五批)笔试考试参考试题及答案解析
- 海洋信息安全:大数据平台建设保障
- 炉底和炉墙砌筑分项工程质量检查评估表
- 2026年沈阳职业技术学院单招职业倾向性考试必刷测试卷带答案
- 2025年铁路专业基础知识考试题库(含答案)
- 2025年地面装饰工(地砖铺贴)考试试卷及答案
- 全媒体运营师培训
- 天桥养护施工方案
- 低压故障排除培训课件
- 鼻鼽(变应性鼻炎)诊疗方案
评论
0/150
提交评论