版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省丽水学院附属高级中学2025年高二上数学期末考试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若椭圆与直线交于两点,过原点与线段AB中点的直线的斜率为,则A. B.C. D.22.设数列的前项和为,若,,,则、、、中,最大的是()A. B.C. D.3.已知向量,,则下列向量中,使能构成空间的一个基底的向量是()A. B.C. D.4.古希腊数学家阿波罗尼奥斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中有这样一个命题:平面内与两定点距离的比为常数k(k>0且k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.已知O(0,0),A(3,0),动点P(x,y)满,则动点P轨迹与圆的位置关系是()A.相交 B.相离C.内切 D.外切5.已知空间向量,,若,则实数的值是()A. B.0C.1 D.26.已知△的顶点B,C在椭圆上,顶点A是椭圆的一个焦点,且椭圆的另一个焦点在BC边上,则△的周长是()A. B.C.8 D.167.直线的斜率是()A. B.C. D.8.为调查参加考试的高二级1200名学生的成绩情况,从中抽查了100名学生的成绩,就这个问题来说,下列说法正确的是()A.1200名学生是总体 B.每个学生是个体C.样本容量是100 D.抽取的100名学生是样本9.若构成空间的一个基底,则下列向量能构成空间的一个基底的是()A.,, B.,,C.,, D.,,10.若,则图像上的点的切线的倾斜角满足()A.一定为锐角 B.一定为钝角C.可能为 D.可能为直角11.已知的二项展开式的各项系数和为32,则二项展开式中的系数为A5 B.10C.20 D.4012.若随机事件满足,,,则事件与的关系是()A.互斥 B.相互独立C.互为对立 D.互斥且独立二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的左焦点为F,点P在双曲线右支上,若线段PF的中点在以原点O为圆心,为半径的圆上,且直线PF的斜率为,则该双曲线的离心率是______14.已知数列前项和为,且,则_______.15.棱长为的正方体的顶点到截面的距离等于__________.16.直线与圆交于A、B两点,当弦AB的长度最短时,则三角形ABC的面积为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)一个盒中装有编号分别为、、、的四个形状大小完全相同的小球.(1)从盒中任取两球,列出所有的基本事件,并求取出的球的编号之和大于的概率;(2)从盒中任取一球,记下该球的编号,将球放回,再从盒中任取一球,记下该球的编号,列出所有的基本事件,并求的概率.18.(12分)已知数列满足,,,n为正整数.(1)证明:数列是等比数列,并求通项公式;(2)证明:数列中的任意三项,,都不成等差数列;(3)若关于正整数n的不等式的解集中有且仅有三个元素,求实数m的取值范围;19.(12分)设圆的圆心为A,直线l过点且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E(1)判断与题中圆A的半径的大小关系,并写出点E的轨迹方程;(2)过点作斜率为,的两条直线,分别交点E的轨迹于M,N两点,且,证明:直线MN必过定点20.(12分)在平面直角坐标系中,双曲线的左、右两个焦点为、,动点P满足(1)求动点P的轨迹E的方程;(2)设过且不垂直于坐标轴的动直线l交轨迹E于A、B两点,问:线段上是否存在一点D,使得以DA、DB为邻边的平行四边形为菱形?若存在,请给出证明:若不存在,请说明理由21.(12分)已知圆与轴相切,圆心在直线上,且到直线的距离为(1)求圆的方程;(2)若圆的圆心在第一象限,过点的直线与相交于、两点,且,求直线的方程22.(10分)已知圆,直线(1)判断直线与圆的位置关系;(2)若直线与圆交于不同两点,且,求直线的方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】细查题意,把代入椭圆方程,得,整理得出,设出点的坐标,由根与系数的关系可以推出线段的中点坐标,再由过原点与线段的中点的直线的斜率为,进而可推导出的值.【详解】联立椭圆方程与直线方程,可得,整理得,设,则,从而线段的中点的横坐标为,纵坐标,因为过原点与线段中点的直线的斜率为,所以,所以,故选D.【点睛】该题是一道关于直线与椭圆的综合性题目,涉及到的知识点有直线与椭圆相交时对应的解题策略,中点坐标公式,斜率坐标公式,属于简单题目.2、C【解析】求出的表达式,解不等式可得结果.【详解】由已知可得,故数列为等差数列,且公差为,所以,,令可得.因此,当时,最大.故选:C.3、D【解析】根据向量共面基本定理只需无解即可满足构成空间向量基底,据此检验各选项即可得解.【详解】因为,所以A中的向量不能与,构成基底;因为,所以B中的向量不能与,构成基底;对于,设,则,解得,,所以,故,,为共面向量,所以C中的向量不能与,构成基底;对于,设,则,此方程组无解,所以,,不共面,故D中的向量与,可以构成基底.故选:D4、A【解析】首先求得点的轨迹,再利用圆心距与半径的关系,即可判断两圆的位置关系.【详解】由条件可知,,化简为:,动点的轨迹是以为圆心,2为半径的圆,圆是以为圆心,为半径的圆,两圆圆心间的距离,所以两圆相交.故选:A5、C【解析】根据空间向量垂直的性质进行求解即可.【详解】因为,所以,因此有.故选:C6、D【解析】根据椭圆定义求解【详解】由椭圆定义得△的周长是,故选:D.7、D【解析】把直线方程化为斜截式即得【详解】直线方程的斜截式为,斜率为故选:D8、C【解析】根据总体、个体、样本容量、样本的定义,结合题意,即可判断和选择.【详解】根据题意,总体是名学生的成绩;个体是每个学生的成绩;样本容量是,样本是抽取的100名学生的成绩;故正确的是C.故选:C.9、B【解析】由空间向量内容知,构成基底的三个向量不共面,对选项逐一分析【详解】对于A:,因此A不满足题意;对于B:根据题意知道,,不共面,而和显然位于向量和向量所成平面内,与向量不共面,因此B正确;对于C:,故C不满足题意;对于D:显然有,选项D不满足题意.故选:B10、C【解析】求出导函数,判断导数的正负,从而得出结论【详解】,时,,递减,时,,递增,而,所以切线斜率可能为正数,也可能为负数,还可以为0,则倾斜角可为锐角,也可为钝角,还可以为,当时,斜率不存在,而存在,则不成立.故选:C11、B【解析】首先根据二项展开式的各项系数和,求得,再根据二项展开式的通项为,求得,再求二项展开式中的系数.【详解】因为二项展开式的各项系数和,所以,又二项展开式的通项为=,,所以二项展开式中的系数为.答案选择B【点睛】本题考查二项式展开系数、通项等公式,属于基础题12、B【解析】利用独立事件,互斥事件和对立事件的定义判断即可【详解】解:因为,,又因为,所以有,所以事件与相互独立,不互斥也不对立故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】如图利用条件可得,,然后利用双曲线的定义可得,即求.【详解】如图设双曲线的右焦点为,线段PF的中点为M,连接,则,又直线PF的斜率为,∴在直角三角形中,,∴,∴,即,∴.故答案:3.14、,.【解析】由的递推关系,讨论、求及,注意验证是否满足通项,即可写出的通项公式.【详解】当时,,当且时,,而,即也满足,∴,.故答案为:,.15、【解析】根据勾股定理可以计算出,这样得到是直角三角形,利用等体积法求出点到的距离.【详解】解:如图所示,在三棱锥中,是三棱锥的高,,在中,,,,所以是直角三角形,,设点到的距离为,.故A到平面的距离为故答案为:【点睛】本题考查了点到线的距离,利用等体积法求出点到面的距离.是解题的关键.16、【解析】由于直线过定点,所以当时,弦AB的长度最短,然后先求出的长,再利用勾股定理可求出的长,从而可求出三角形ABC的面积【详解】因为直线恒过定点,圆的圆心,半径为,所以当时,弦AB的长度最短,因为,所以,所以三角形ABC的面积为,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)基本事件答案见解析,概率为;(2)基本事件答案见解析,概率为.【解析】(1)利用列举法列举出所有的基本事件,并确定事件“取出的球的编号之和大于”所包含的基本事件数,利用古典概型的概率公式可求得结果;(2)利用列举法列举出所有的基本事件,并确定事件“”所包含的基本事件数,利用古典概型的概率公式可求得结果.【详解】(1)记“从盒中任取两球,取出球的编号之和大于”为事件,样本点表示“从盒中取出、号球”,且和表示相同的样本点(以此类推),则样本空间为,则,根据古典概型可知,从盒中任取两球,取出球的编号之和大于的概率为;(2)记“”为事件,样本点表示第一次取出号球,将球放回,从盒中取出号球(以此类推),则样本空间,则,所以,故事件“”的概率为.18、(1)证明见解析;(2)证明见解析(3)【解析】(1)将所给等式变形为,根据等比数列的定义即可证明结论;(2)假设存在,,成等差数列,根据等差数列的性质可推出矛盾,故说明假设错误。从而证明原结论;(3)求出n=1,2,3,4时的情况,再结合时,,即可求得结果.【小问1详解】由已知可知,显然有,否则数列不可能是等比数列;因为,,故可得,由得:,即有,所以数列等比数列,且;【小问2详解】假设存在,,成等差数列,则,即,整理得,即,而是奇数,故上式左侧是奇数,右侧是一个偶数,不可能相等,故数列中的任意三项,,都不成等差数列;【小问3详解】关于正整数n的不等式,即,当n=1时,;当n=2时,;当n=3时,;当n=4时,,并且当时,,因关于正整数n的不等式的解集中有且仅有三个元素,故.19、(1)与半径相等,(2)证明见解析【解析】(1)依据椭圆定义去求点E的轨迹方程事半功倍;(2)直线MN要分为斜率存在的和不存在的两种情况进行讨论,由设而不求法把条件转化为直线MN过定点的条件即可解决.【小问1详解】圆即为,可得圆心,半径,由,可得,由,可得,即为,即有,则,所以其与半径相等.因为,故E的轨迹为以A,B为焦点的椭圆(不包括左右顶点),且有,,即,,,则点E的轨迹方程为;【小问2详解】当直线MN斜率不存在时,设直线方程为,则,,,,则,∴,此时直线MN的方程为当直线MN斜率存在时,设直线方程为:,与椭圆方程联立:,得,设,,有则将*式代入化简可得:,即,∴,此时直线MN:,恒过定点又直线MN斜率不存在时,直线MN:也过,故直线MN过定点.【点睛】数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。20、(1);(2)存在,理由见解析.【解析】(1)根据题意用定义法求解轨迹方程;(2)在第一问的基础上,设出直线l的方程,联立椭圆方程,用韦达定理表达出两根之和,两根之积,求出直线l的垂直平分线,从而得到D点坐标,证明出结论.【小问1详解】由题意得:,所以,,而,故动点P的轨迹E的方程为以点、为焦点的椭圆方程,由得:,,所以动点P的轨迹E的方程为;【小问2详解】存,理由如下:显然,直线l的斜率存在,设为,联立椭圆方程得:,设,,则,,要想以DA、DB为邻边的平行四边形为菱形,则点D为AB垂直平分线上一点,其中,,则,故AB的中点坐标为,则AB的垂直平分线为:,令得:,且无论为何值,,点D在线段上,满足题意.21、(1)或(2)或【解析】(1)设圆心的坐标为,则该圆的半径长为,利用点到直线的距离公式可求得的值,即可得出圆的标准方程;(2)利用勾股定理可求得圆心到的距离,分析可知直线的斜率存在,设直线的方程为,利用点到直线的距离公式可求得关于的方程,解出的值,即可得出直线的方程.【小问1详解】解:设圆心的坐标为,则该圆的半径长为,因为圆心到直线的距离为,解得,所以圆心的坐标为或,半径为,因此,圆的标准方程为或.【小问2详解】解:若
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 9364.5-2025小型熔断器第5部分:小型熔断体质量评定导则
- 化工催化技术课件
- 化工仿真培训实操课件
- 飞秒技术科普
- 2026年人力资源管理师绩效考核体系设计知识练习(含答案解析)
- 2026云南保山市腾冲市边防办招聘边境专职联防员备考考试题库及答案解析
- 2026年青岛市即墨区部分事业单位公开招聘工作人员(53人)笔试备考试题及答案解析
- 2026云南嘉华食品有限公司招聘备考考试题库及答案解析
- 别墅搭架施工方案(3篇)
- 标识制作施工方案(3篇)
- 供应链金融居间合同
- PVC结构拉缝板技术交底
- DB43∕T 389-2010 安化黑茶千两茶
- 输变电标志牌安装施工方案
- 无张力尿道悬吊术护理
- 翰威特:2010年翰威特员工敬业度调研简介
- DL∕T 5210.6-2019 电力建设施工质量验收规程 第6部分:调整试验
- 新生儿机械通气指南
- 2023年PCB工程师年度总结及来年计划
- 绩效考核和薪酬方案通用模板
- YY/T 0590.1-2018医用电气设备数字X射线成像装置特性第1-1部分:量子探测效率的测定普通摄影用探测器
评论
0/150
提交评论