数学新导学人教A版选修2-3课时作业2分类加法计数原理与分步乘法计数原理的应用(习题课)_第1页
数学新导学人教A版选修2-3课时作业2分类加法计数原理与分步乘法计数原理的应用(习题课)_第2页
数学新导学人教A版选修2-3课时作业2分类加法计数原理与分步乘法计数原理的应用(习题课)_第3页
数学新导学人教A版选修2-3课时作业2分类加法计数原理与分步乘法计数原理的应用(习题课)_第4页
数学新导学人教A版选修2-3课时作业2分类加法计数原理与分步乘法计数原理的应用(习题课)_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课时作业2分类加法计数原理与分步乘法计数原理的应用(习题课)|基础巩固|(25分钟,60分)一、选择题(每小题5分,共25分)1.用0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有()A.144个B.120个C.96个D.72个解析:由题意知,首位数字只能是4,5.若首位数字是5,则末位数字可从0,2,4中取1个,有3种方法.其余各位数字有4×3×2=24种;由分步乘法计数原理知首位为5时,满足条件的数字个数为3×24=72.若首位数字为4,则有2×4×3×2=48个.依分类加法计数原理知满足条件的数字有72+48=120个.选B.答案:B2.如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为()A.96B.84C.60D.48解析:A有4种选择,B有3种选择,若C与A相同,则D有3种选择,若C与A不同,则C有2种选择,D也有2种选择,所以共有4×3×(3+2×2)=84种.答案:B3.高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有()A.16种B.18种C.37种D.48种解析:高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践有43种不同的分配方案,若三个班都不去工厂甲则有33种不同的分配方案.则满足条件的不同的分配方案有43-33=37(种).故选C.答案:C4.将3本相同的小说,2本相同的诗集全部分给4名同学,每名同学至少1本,则不同的分法有()A.24种B.28种C.32种D.36种解析:第一类,有一个人分到一本小说和一本诗集,这种情况下的分法有:先将一本小说和一本诗集分到一个人手上,有4种分法,将剩余的2本小说,1本诗集分给剩余3个同学,有3种分法,共有3×4=12(种);第二类,有一个人分到两本诗集,这种情况下的分法有:先将两本诗集分到一个人手上,有4种情况,将剩余的3本小说分给剩余3个人,只有一种分法.共有4×1=4(种);第三类,有一个人分到两本小说,这种情况的分法有:先将两本小说分到一个人手上,有4种情况,再将剩余的2本诗集和1本小说分给剩余的3个人,有3种分法.那么共有4×3=12(种).综上所述,总共有12+4+12=28(种)分法.答案:B5.有5个不同的棱柱、3个不同的棱锥、4个不同的圆台、2个不同的球,若从中取出2个几何体,使多面体和旋转体各一个,则不同的取法种数是()A.14B.23C.48D.120解析:分两步:第一步,取多面体,有5+3=8种不同的取法,第二步,取旋转体,有4+2=6种不同的取法.所以不同的取法种数是8×6=48种.答案:C二、填空题(每小题5分,共15分)6.某运动会上,8名男运动员参加100米决赛.其中甲、乙、丙三人必须在1,2,3,4,5,6,7,8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有________种.解析:分两步安排这8名运动员.第一步:安排甲,乙,丙三人,共有1,3,5,7四条跑道可安排,所以共有4×3×2=24种方法;第二步:安排另外5人,可在2,4,6,8及余下的一条奇数号跑道安排,共有5×4×3×2×1=120种.所以安排这8人的方式共有24×120=2880种.答案:28807.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数字,则每个格子的标号与所填的数字均不同的填法有________种.解析:1号方格里可填2,3,4三个数字,有3种填法,1号方格填好后,再填与1号方格内数字相同的号的方格,又有3种填法,其余两个方格只有1种填法.所以共有3×3×1=9种不同的方法.答案:98.在一块并排10垄的田地中,选择2垄分别种植A,B两种作物,每种作物种植一垄,为有利于作物生长,要求A,B两种作物的间隔不小于6垄,则种植A,B的不同方法有________种.(用数字作答)解析:按从左往右把各垄田地依次列为1,2,3,…,10.分两步:第一步,先选垄,有1,8;1,9;1,10;2,9;2,10;3,10.共6种选法;第二步,种植A,B两种作物,有2种选法.因此,由分步乘法计数原理,不同的选垄种植方法有6×2=12(种).答案:12三、解答题(每小题10分,共20分)9.8张卡片上写着0,1,2,…,7共8个数字,取其中的三张卡片排放在一起,可组成多少个不同的三位数?解析:先排放百位,从1,2,…,7共7个数中选一个有7种选法;再排十位,从除去百位的数外,剩余的7个数(包括0)中选一个,有7种选法;最后排个位,从除前两步选出的数外,剩余的6个数中选一个,有6种选法.由分步乘法计数原理,共可以组成7×7×6=294个不同的三位数.10.编号为A,B,C,D,E的五个小球放在如图所示的五个盒子里,要求每个盒子只能放一个小球,且A球不能放在1,2号,B球必须放在与A球相邻的盒子中,求不同的放法有多少种?解析:根据A球所在位置分三类:(1)若A球放在3号盒子内,则B球只能放在4号盒子内,余下的三个盒子放球C,D,E,则根据分步乘法计数原理得3×2×1=6种不同的放法.(2)若A球放在5号盒子内,则B球只能放在4号盒子内,余下的三个盒子放球C,D,E,则根据分步乘法计数原理得3×2×1=6种不同的放法.(3)若A球放在4号盒子内,则B球可以放在2号,3号,5号盒子中的任何一个,有3种,余下的三个盒子放球C,D,E有3×2×1=6种不同的放法,根据分步乘法计数原理得3×3×2×1=18种不同方法.综上所述,由分类加法计数原理得不同的放法共有6+6+18=30种.|能力提升|(20分钟,40分)11.甲与其四位同事各有一辆私家车,车牌尾数分别是0,0,2,1,5,为遵守当地某月5日至9日5天的限行规定(奇数日车牌尾数为奇数的车通行,偶数日车牌尾数为偶数的车通行),五人商议拼车出行,每天任选一辆符合规定的车,但甲的车最多只能用一天,则不同的用车方案种数为()A.5B.24C.32D.64解析:5日至9日,有3天奇数日,2天偶数日,第一步安排奇数日出行,每天都有2种选择,共有23=8(种),第二步安排偶数日出行分两类,第一类,先选1天安排甲的车,另外一天安排其他车,有2×2=4(种).第二类,不安排甲的车,每天都有2种选择,共有22=4(种),共计4+4=8,根据分步乘法计数原理,不同的用车方案种数共有8×8=64.故选D.答案:D12.从{-3,-2,-1,0,1,2,3}中,任取3个不同的数作为抛物线方程y=ax2+bx+c的系数,如果抛物线经过原点,且顶点在第一象限,则这样的抛物线共有________条.解析:因为抛物线经过原点,所以c=0,从而知c只有1种取值.又抛物线y=ax2+bx+c顶点在第一象限,所以eq\b\lc\{\rc\(\a\vs4\al\co1(-\f(b,2a)>0,,\f(4ac-b2,4a)>0,))由c=0,得a<0,b>0,所以a∈{-3,-2,-1},b∈{1,2,3},这样要求的抛物线的条数可由a,b,c的取值来确定:第一步:确定a的值,有3种方法;第二步:确定b的值,有3种方法;第三步:确定c的值,有1种方法.由分步乘法计数原理知,表示的不同的抛物线有N=3×3×1=9(条).答案:913.用n种不同颜色为下列两块广告牌着色(如图所示①②),要求在A,B,C,D四个区域中相邻(有公共边的)区域不用同一种颜色.(1)若n=6,为①着色时共有多少种不同的方法?(2)若为②着色时共有120种不同的方法,求n.解析:(1)为A着色有6种方法,为B着色有5种方法,为C着色有4种方法,为D着色也有4种方法,所以,共有着色方法6×5×4×4=480(种).(2)与(1)的区别在于与D相邻的区域由两块变成了三块.同理,不同的着色方法数是n(n-1)(n-2)(n-3).因为n(n-1)(n-2)(n-3)=120.又120<480,所以可分别将n=4,5代入得n=5时上式成立.即n的值为5.14.(1)如果一个三位正整数如“a1a2a3”满足a1<a2且a(2)如果一个三位正整数如“a1a2a3”满足a1>a2且a解析:(1)分8类:当中间数为2时,百位只能选1,个位可选1、0,由分步乘法计数原理,有1×2=2个;当中间数为3时,百位可选1、2,个位可选0、1、2,由分步乘法计数原理,有2×3=6个;同理可得:当中间数为4时,有3×4=12个;当中间数为5时,有4×5=20个;当中间数为6时,有5×6=30个;当中间数为7时,有6×7=42个;当中间数为8时,有7×8=56个;当中间数为9时,有8×9=72个;故共有2+6+12+20+30+42+56+72=240个.(2)分8类:当中间数为0时,百位可选1~9,个位可选1~9,由分步乘法计数原理,有9×9=81个;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论