成都石室锦城外国语学校中考数学期末几何综合压轴题易错汇编_第1页
成都石室锦城外国语学校中考数学期末几何综合压轴题易错汇编_第2页
成都石室锦城外国语学校中考数学期末几何综合压轴题易错汇编_第3页
成都石室锦城外国语学校中考数学期末几何综合压轴题易错汇编_第4页
成都石室锦城外国语学校中考数学期末几何综合压轴题易错汇编_第5页
已阅读5页,还剩51页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

成都石室锦城外国语学校中考数学期末几何综合压轴题易错汇编一、中考数学几何综合压轴题1.如图1,在中,,,点,分别在边,上,,连接,点,,分别为,,的中点.(1)观察猜想图1中,线段与的数量关系是,位置关系是;(2)探究证明把绕点逆时针方向旋转到图2的位置,连接,,,判断的形状,并说明理由;(3)拓展延伸把绕点在平面内自由旋转,若,,请直接写出面积的最大值.解析:(1)PM=PN,;(2)等腰直角三角形,理由详见解析;(3).【详解】试题分析:(1)已知点,,分别为,,的中点,根据三角形的中位线定理可得,,,根据平行线的性质可得∠DPM=∠DCE,∠NPD=∠ADC,在中,,,,可得BD=EC,∠DCE+∠ADC=90°,即可得PM=PN,∠DPM+∠NPD=90°,即;(2)是等腰直角三角形,根据旋转的性质易证△BAD≌△CAE,即可得BD=CE,∠ABD=∠ACE,根据三角形的中位线定理及平行线的性质(方法可类比(1)的方法)可得PM="PN,"∠MPD=∠ECD,∠PNC=∠DBC,所以∠MPD=∠ECD=∠ACD+∠ACE=∠ACD+∠ABD,∠DPN=∠PNC+∠PCN=∠DBC+∠PCN,即可得∠MPN=∠MPD+∠DPN=∠ACD+∠ABD+∠DBC+∠PCN=∠ABC+∠ACB=90°,即△PMN为等腰直角三角形;(3)把绕点旋转到如图的位置,此时PN=(AD+AB)="7,"PM=(AE+AC)=7,且PN、PM的值最长,由(2)可知PM=PN,,所以面积的最大值为.试题解析:(1)PM=PN,;(2)等腰直角三角形,理由如下:由旋转可得∠BAD=∠CAE,又AB=AC,AD=AE∴△BAD≌△CAE∴BD=CE,∠ABD=∠ACE,∵点,分别为,的中点∴PM是△DCE的中位线∴PM=CE,且,同理可证PN=BD,且∴PM="PN,"∠MPD=∠ECD,∠PNC=∠DBC,∴∠MPD=∠ECD=∠ACD+∠ACE=∠ACD+∠ABD,∠DPN=∠PNC+∠PCN=∠DBC+∠PCN,∴∠MPN=∠MPD+∠DPN=∠ACD+∠ABD+∠DBC+∠PCN=∠ABC+∠ACB=90°,即△PMN为等腰直角三角形.(3).考点:旋转和三角形的综合题.2.(基础巩固)(1)如图①,,求证:.(尝试应用)(2)如图②,在菱形中,,点E,F分别为边上两点,将菱形沿翻折,点A恰好落在对角线上的点P处,若,求的值.(拓展提高)(3)如图③,在矩形中,点P是边上一点,连接,若,求的长.解析:(1)见解析;(2);(3).【分析】(1)由证明,再根据相似三角形的判定方法解题即可;(2)由菱形的性质,得到,,继而证明是等边三角形,结合(1)中相似三角形对应边成比例的性质,设,则可整理得到,据此解题;(3)在边上取点E,F,使得,由矩形的性质,得到,结合(1)中相似三角形对应边成比例的性质解题即可.【详解】解:(1)证明:∵,∴,即,∵,∴;(2)∵四边形是菱形,∴,∴,∴是等边三角形,∴,由(1)得,,∴,设,则∴,可得①,②,①-②,得,∴,∴的值为;(3)如图,在边上取点E,F,使得,设AB=CD=m,∵四边形是矩形,∴,∴,=DF,,由(1)可得,,∴,∴,整理,得,解得或(舍去),∴.【点睛】本题考查相似三角形的综合题、等边三角形的性质、菱形的性质、矩形的性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.3.综合与实践数学问题:(1)如图1,是等腰直角三角形,过斜边的中点作正方形,分别交,于点,,则,,之间的数量关系为______.问题解决:(2)如图2,在任意内,找一点,过点作正方形,分别交,于点,,若,求的度数;图2拓展提升:(3)如图3,在(2)的条件下,分别延长,,交于点,,则,,的数量关系为______.图3(4)在(3)的条件下,若,,则______.解析:(1);(2)135°;(3);(4)【分析】(1)根据等腰直角三角形的斜边与直角边的关系及正方形的性质即可得出数量关系;(2)延长至点,使,连接,根据正方形的性质易证,从而可得DP=DB,进而可证,从而可得,,由三角形内角和定理即可求得∠ADB的度数;(3)由正方形的对边平行的性质易得AM=DM,BN=DN,从而在Rt△MDN中,由勾股定理即可得MN、AM、BN的数量关系;(4)由(2)知FP=BE,即可求得DE=DF=1,根据相似三角形的性质可分别求得EM、FN的长,从而可得DM、DN的长,在Rt△MDN中,由勾股定理即可求得MN的长.【详解】(1)∵是等腰直角三角形,且AB=AC,∴,∠A=∠B=45°,∵四边形DECF是正方形,且D是AB的中点,∴DF=FC=CE=DE,∠DFA=∠DEB=90°,DF∥BC,DE∥AC,∴∠ADF=∠B=45°,∠BDE=∠A=45°,∴AF=DF,BE=DE,∴F、E分别是AC、BC的中点,∴CF=BE,∴AC=AF+CF=AF+BE,∴;(2)延长至点,使,连接.∵四边形是正方形,∴,.∵,,,∴.∴.∵,,,∴.又∵,,∴.∴.同理可得:.∵,∴.∴.∴.(3)∵DF∥BC,DE∥AC,∴∠CBD=∠NDB,∠DAC=∠ADM,∵,,∴∠ABD=∠NDB,∠ADM=∠DAB,∴BN=DN,AM=DM.在Rt△MDN中,由勾股定理得:故答案为:,(4)∵△ABC是直角三角形,AC=3,BC=4,∴由勾股定理得:AB=5,设正方形DECF的边长为x,由(2)知,AP=AB=5,BE=FP,CP=AP-AC=2,∵FP=CP+CF,BE=BC-CE,即4-x=2+x,解得x=1,∴BE=BC-CE=3,AF=AC-CF=2,∵EM∥AC,FN∥BC,∴△BME∽△BAC,△AFN∽△ACB∴,,∴,.∵DM=ME-DE=,DN=FN-DF=,.故答案为:.【点睛】本题考查了正方形的性质,等腰三角形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理等知识,截长补短法作辅助线是本题的关键.4.定义:有一组对角互补的四边形叫做“对补四边形”,例如,四边形中,若或,则四边形是“对补四边形”.(概念理解)(1)如图1,四边形是“对补四边形”.①若,则________;②若.且时.则_______;(拓展提升)(2)如图,四边形是“对补四边形”,当,且时,图中之间的数量关系是,并证明这种关系;(类比应用)(3)如图3,在四边形中,平分;①求证:四边形是“对补四边形”;②如图4,连接,当,且时,求的值.解析:(1)①,②;(2),理由见解析;(3)①见解析,②.【分析】(1)①根据“对补四边形”的定义,结合,即可求得答案;②根据“对补四边形”的定义,由,得,再利用勾股定理即可求得答案;(2)延长至点,使得,连接,根据“对补四边形”的定义,可证明,继而证明,从而可得结论;(3)①过点作于点,于点,则,可证,进而可证四边形是“对补四边形”;②设,则根据,再运用建立方程,解方程即可求得.【详解】(1),设,根据“对补四边形”的定义,,即,解得,,,.故答案为:.②如图1,连接,,,,在中,在中,,,,故答案为:.(2),理由如下:如图2,延长至点,使得,连接,四边形是“对补四边形”,,,,,,,,即,,,,,,,,即,故答案为:.(3)①证明:如图3,过点作于点,于点,则,平分,,,,,,,与互补,四边形是“对补四边形”;②由①可知四边形是“对补四边形”,,,,设,则,,,,,,,整理得:,解得:.在中,,.【点睛】本题考查了勾股定理,四边形内角和定理,全等三角形的性质与判定,解一元二次方程,三角函数的定义等知识,熟练掌握勾股定理和全等三角形的判定和性质,准确理解新定义是解题的关键.5.(了解概念)在凸四边形中,若一边与它的两条邻边组成的两个内角相等,则称该四边形为邻等四边形,这条边叫做这个四边形的邻等边.(理解运用)(1)在邻等四边形中,,,若是这个邻等四边形的邻等边,则的度数为__________;(2)如图,凸四边形中,P为边的中点,,判断四边形是否为邻等四边形,并证明你的结论;(拓展提升)(3)在平面直角坐标系中,为邻等四边形的邻等边,且边与x轴重合,已知,,,若在边上使的点P有且仅有1个,则m的值是__________.解析:(1)130°;(2)四边形ABCD是邻等四边形,理由见解析;(3)﹣5±4【分析】(1)根据邻等四边形的定义即可求解;(2)由△ADP∽△PDC,可得,∠DAP=∠DPC,∠APD=∠PCD,由P为AB的中点,可得AP=BP,则,可证△BPC∽△ADP,由相似三角形的性质得出∠A=∠B即可;(3)①若点B在点A右侧,如图,由AB为邻等边,则有∠DAB=∠ABC=∠DPC,可证△ADP∽△BPC,可得=,设点P(n,0),由等腰直角三角形可求∠BAD=45°,可求B、C横坐标之差为3,B(m+3,0),将AP,BP,AD,BC,代入得:,整理可得:﹣n2+(m+1)n+2m﹣18=0,由题意可知n只有一个解,可求得m=﹣5+4;②若点B在点A左侧,可求得∠BAD=135°,可证△ADP∽△BPC,可得=,可求得B、C横坐标之差为3,,可求得m=﹣5﹣4.【详解】解:(1)∵CD为邻等边,∴∠C=∠D,又∵,,∴∠C=∠D=(360°﹣∠A﹣∠B)÷2=130°,∴∠C=130°.故答案为:130°;(2)四边形ABCD是邻等四边形,理由如下:∵△ADP∽△PDC,∴,∠DAP=∠DPC,∠APD=∠PCD,∠ADP=∠PDC,又∵P为AB的中点,∴AP=BP,∴,∴,∵∠APD+∠BPC=180°﹣∠DPC,∠PCD+∠PDC=180°﹣∠DPC,且∠APD=∠PCD,∴∠BPC=∠PDC,∵∠ADP=∠PDC,∴∠ADP=∠BPC,∴△BPC∽△ADP,∴∠B=∠A,∴四边形ABCD为邻等四边形;(3)若点B在点A右侧,如图,∵AB为邻等边,则有∠DAB=∠ABC=∠DPC,又∵∠ADP+∠DPA=180°﹣∠DAB,∠BPC+∠DPA=180°﹣∠DPC,∴∠DAB=∠DPC,∠ADP=∠BPC,∴△ADP∽△BPC,∴=,设点P(n,0),∵A(﹣2,0),D(2,4),∴∠BAD=45°,∴∠ABC=45°,过点C作CE⊥x轴于点E,则∠CEB=90°,∠BCE=∠ABC=45°,∴CE=BE,∵点C(m,3),∴CE=3,∴BE=3,∴B(m+3,0),∴AP=n+2,BP=m+3﹣n,∴AD==,BC==,代入=得:,整理可得:﹣n2+(m+1)n+2m﹣18=0,由题意可知n只有一个解,∴△=(m+1)2+4(2m﹣18)=0,解得:m=﹣5±4,又∵点C在点D右侧,∴m=﹣5+4;②若点B在点A左侧,如图,此时,∵A(﹣2,0),D(2,4),∴∠OAD=45°,∴∠BAD=∠ABC=∠DPC=135°,∵∠ADP+∠DPA=180°﹣∠DAB,∠BPC+∠DPA=180°﹣∠DPC,∴ADP=∠BPC,∴△ADP∽△BPC,∴=,由①得:B(m+3,0),C(m,3),P(n,0),AP=﹣2﹣n,BP=n﹣m﹣3,AD=,BC=,∴,解得:m=﹣5±4,又∵点C在点D左侧,∴m=﹣5﹣4;综上所述:m=﹣5±4.【点睛】本题是相似综合题,考查新定义图形,仔细阅读题目,抓住定义中的性质,会验证新定义图形,相似三角形的判定与性质,一元二次方程根的判别式,利用相似三角形的性质构造关于n的一元二次方程是解题关键.6.我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子;(2)问题探究;如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;(3)应用拓展;如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC为等邻角四边形时,求出它的面积.解析:(1)矩形或正方形;(2)AC=BD,理由见解析;(3)10或12﹣.【分析】(1)矩形或正方形邻角相等,满足“等邻角四边形”条件;(2)AC=BD,理由为:连接PD,PC,如图1所示,根据PE、PF分别为AD、BC的垂直平分线,得到两对角相等,利用等角对等角得到两对角相等,进而确定出∠APC=∠DPB,利用SAS得到三角形ACB与三角形DPB全等,利用全等三角形对应边相等即可得证;(3)分两种情况考虑:(i)当∠AD′B=∠D′BC时,延长AD′,CB交于点E,如图3(i)所示,由S四边形ACBD′=S△ACE﹣S△BED′,求出四边形ACBD′面积;(ii)当∠D′BC=∠ACB=90°时,过点D′作D′E⊥AC于点E,如图3(ii)所示,由S四边形ACBD′=S△AED′+S矩形ECBD′,求出四边形ACBD′面积即可.【详解】(1)矩形或正方形;(2)AC=BD,理由为:连接PD,PC,如图1所示:∵PE是AD的垂直平分线,PF是BC的垂直平分线,∴PA=PD,PC=PB,∴∠PAD=∠PDA,∠PBC=∠PCB,∴∠DPB=2∠PAD,∠APC=2∠PBC,即∠PAD=∠PBC,∴∠APC=∠DPB,∴△APC≌△DPB(SAS),∴AC=BD;(3)分两种情况考虑:(i)当∠AD′B=∠D′BC时,延长AD′,CB交于点E,如图3(i)所示,∴∠ED′B=∠EBD′,∴EB=ED′,设EB=ED′=x,由勾股定理得:42+(3+x)2=(4+x)2,解得:x=4.5,过点D′作D′F⊥CE于F,∴D′F∥AC,∴△ED′F∽△EAC,∴,即,解得:D′F=,∴S△ACE=AC×EC=×4×(3+4.5)=15;S△BED′=BE×D′F=×4.5×=,则S四边形ACBD′=S△ACE﹣S△BED′=15﹣=10;(ii)当∠D′BC=∠ACB=90°时,过点D′作D′E⊥AC于点E,如图3(ii)所示,∴四边形ECBD′是矩形,∴ED′=BC=3,在Rt△AED′中,根据勾股定理得:AE=,∴S△AED′=AE×ED′=××3=,S矩形ECBD′=CE×CB=(4﹣)×3=12﹣3,则S四边形ACBD′=S△AED′+S矩形ECBD′=+12﹣3=12﹣.【点睛】此题是四边形综合题,主要考查了“等邻角四边形”的理解,三角形,四边形的内角和定理,角平分线的意义,勾股定理,旋转的性质,相似三角形的性质和判定,理解“等邻角四边形”的定义是解本题的关键,分类讨论是解本题的难点,是一道中考常考题.7.如图所示,在△ABC中,,D、E分别是边AB、BC上的动点,且,连结AD、AE,点M、N、P分别是CD、AE、AC的中点,设.(1)观察猜想①在求的值时,小明运用从特殊到一般的方法,先令,解题思路如下:如图1,先由,得到,再由中位线的性质得到,,进而得出△PMN为等边三角形,∴.②如图2,当,仿照小明的思路求的值;(2)探究证明如图3,试猜想的值是否与的度数有关,若有关,请用含的式子表示出,若无关,请说明理由;(3)拓展应用如图4,,点D、E分别是射线AB、CB上的动点,且,点M、N、P分别是线段CD、AE、AC的中点,当时,请直接写出MN的长.解析:(1)②;(2)的值与的度数有关,;(3)MN的长为或.【分析】(1)②先根据线段的和差求出,再根据中位线定理、平行线的性质得出,从而可得出,然后根据等腰直角三角形的性质即可得;(2)参照题(1)的方法,得出为等腰三角形和的度数,再利用等腰三角形的性质即可求出答案;(3)分两种情况:当点D、E分别是边AB、CB上的动点时和当点D、E分别是边AB、CB的延长线上的动点时,如图(见解析),先利用等腰三角形的性质与判定得出,再根据相似三角形的判定与性质得出BC、CE的长,由根据等腰三角形的三线合一性得出,从而可得的值,最后分别利用(2)的结论即可得MN的长.【详解】(1)②∴∴为等腰直角三角形,∵点M、N、P分别是CD、AE、AC的中点∴∴为等腰直角三角形,∴即;(2)的值与的度数有关,求解过程如下:由(1)可知,,即为等腰三角形如图5,作则在中,,即则;(3)依题意,分以下两种情况:①当点D、E分别是边AB、CB上的动点时如图6,作的角平分线交AB边于点F,并连结BP,,即设,则解得或(不符题意,舍去)即由(2)可知,点P是AC上的中点,(等腰三角形的三线合一)在中,,即②如图7,当点D、E分别是边AB、CB的延长线上的动点时同理可得:综上,MN的长为或.【点睛】本题考查了中位线定理、平行线的性质、相似三角形的判定与性质、等腰三角形的性质、解直角三角形等知识点,较难的是题(3),依据题意,正确分两种情况,并结合题(2)的结论是解题关键.8.(感知)如图1,在平面直角坐标系中,点的坐标为,点的坐标为,将线段绕着点按逆时针方向旋转至线段,过点作轴,垂足为点,易知,得到点的坐标为.(探究)如图2,在平面直角坐标系中,点的坐标为,点的坐标为,将线段绕着点按逆时针方向旋转至线段.(1)求点的坐标.(用含的代数式表示)(2)求出BC所在直线的函数表达式.(拓展)如图3,在平面直角坐标系中,点的坐标为,点在轴上,将线段绕着点按逆时针方向旋转至线段,连结、,则的最小值为_______.解析:【探究】(1)点坐标为;(2);【拓展】.【分析】探究:(1)证明△AOC≌△CMB(AAS),即可求解;(2)根据点B的坐标为(m,m+1),点坐标,即可求解;拓展:BO+BA=,BO+BA的值,相当于求点P(m,m)到点M(1,-1)和点N(0,-1)的最小值,即可求解.【详解】解:探究:(1)过点作轴,垂足为点.,.线段绕着点按逆时针方向旋转至线段,...,,.点坐标,点坐标,点坐标为(2)∵点B的坐标为(m,m+1),点C为(0,m),设直线BC为:y=kx+b,,解得:,∴;则BC所在的直线为:;拓展:如图作BH⊥OH于H.设点C的坐标为(0,m),由(1)知:OC=HB=m,OA=HC=1,则点B(m,1+m),则:BO+BA=,BO+BA的值,相当于求点P(m,m)到点M(1,-1)和点N(0,-1)的最小值,相当于在直线y=x上寻找一点P(m,m),使得点P到M(0,-1),到N(1,-1)的距离和最小,作M关于直线y=x的对称点M′(-1,0),易知PM+PN=PM′+PN≥NM′,M′N=,故:BO+BA的最小值为,故答案为:.【点睛】本题为一次函数综合题,主要考查的是三角形全等的思维拓展,其中拓展,将BO+BA的值转化点P(m,m)到点M(1,-1)和点N(0,-1)的最小值,是本题的新颖点9.如图1,在正方形中,点分别在边上,且,延长到点G,使得,连接.(特例感知)(1)图1中与的数量关系是______________.(结论探索)(2)图2,将图1中的绕着点A逆时针旋转,连接并延长到点G,使得,连接,此时与还存在(1)中的数量关系吗?判断并说明理由.(拓展应用)(3)在(2)的条件下,若,当是以为直角边的直角三角形时,请直接写出的长.解析:(1)=,(2)存在,证明见解析,(3)或或16或4.【分析】(1)连接GC,证△CDG≌△CBE,得出△GCE为等腰直角三角形即可;(2)类似(1)的方法,先证△AFD≌△AEB,再证△CDG≌△CBE,得出△GCE为等腰直角三角形即可;(3)根据E、F是直角顶点分类讨论,结合(2)中结论,利用勾股定理求解即可.【详解】解:(1)连接GC,∵AE=AF,AD=AB,∴DF=BE,∵,∴DG=BE,∵∠GDC=∠B=90°,DC=BC,∴△CDG≌△CBE,∴CE=CG,∠GCD=∠ECB,∵∠ECB+∠DCE=90°,∴∠GCE=∠GCD+∠DCE=90°,∴=;故答案为:=;(2)存在,连接GC,∵AE=AF,AD=AB,∠FAE=∠DAB=90°,∴∠FAD=∠EAB,∴△FAD≌△EAB,∴FD=EB=GD,∠FDA=∠EBA,∵∠GDC+∠FDA=90°,∠EBC+∠EBA=90°,∴∠GDC=∠EBC,∵DC=BD,∴△CDG≌△CBE,与(1)同理,=;(3)当∠FEG=90°时,如图1,因为∠FEA=∠GEC=45°,所以,A、E、C在一条直线上,∵AB=5,∴AC=5,CE=5-3=2,GE=EC=4;如图2,E在CA延长线上,同理可得,EC=8,GE=EC=16;当∠EFG=90°时,如图3,∠AFD=∠EFG+∠AFE=135°,由(2)得,∠AFD=∠AEB=135°,DF=BE,所以,B、E、F在一条直线上,作AM⊥EF,垂足为M,∵,∴EF=6,AM=ME=MF=3,,BE=DF=1,FG=2,;如图4,同图3,BE=DF=7,FG=14,EF=6,,综上,的长为或或16或4.【点睛】本题考查了旋转的性质、全等三角形的判定与性质、勾股定理和等腰直角三角形的性质,解题关键是恰当的连接辅助线,构造全等三角形;会分类讨论,结合题目前后联系,解决问题.10.观察猜想:(1)如图1,在Rt△ABC中,∠ACB=90°,∠BAC=30°,点D与点C重合,点E在斜边AB上,连接DE,且DE=AE,将线段DE绕点D顺时针旋转90°得到线段DF,连接EF,则=______,sin∠ADE=________,探究证明:(2)在(1)中,如果将点D沿CA方向移动,使CD=AC,其余条件不变,如图2,上述结论是否保持不变?若改变,请求出具体数值:若不变,请说明理由.拓展延伸(3)如图3,在△ABC中,∠ACB=90°,∠CAB=a,点D在边AC的延长线上,E是AB上任意一点,连接DE.ED=nAE,将线段DE绕着点D顺时针旋转90°至点F,连接EF.求和sin∠ADE的值分别是多少?(请用含有n,a的式子表示)解析:(1);;(2)不变;(3)=;sin∠ADE=.【分析】(1)由等腰三角形的性质和等边三角形的判定得到∠A=∠ACE=30°,△BEC是等边三角形,据此求得CE的长度,根据等腰直角三角形的性质来求EF的长度,易得答案;(2)不变.理由:如图2,过点D作DG∥BC交AB于点G,构造直角三角形:△ADG,结合含30度角的直角三角形的性质和锐角三角函数的定义,结合方程求得答案;(3)如图3,过点E作EG⊥AD于点G,构造直角三角形,根据锐角三角函数的定义列出方程并解答.【详解】(1)如图1,∵在Rt△ABC中,∠ACB=90°,∠BAC=30°,∴∠B=60°.又CE=AE,∴∠ACE=∠A=30°,∴∠BCE=60°,∴△BEC是等边三角形,∴BE=CE.∴AE=CE=BE.∴AD=AB=CE.又由旋转的性质知:FC=EC,∠FCE=90°,∴EF=CE,∴==.∵∠ADE=30°,∴sin∠ADE=.故答案是:;;(2)不变,理由:如图2,过点D作DG∥BC交AB于点G,则△ADG是直角三角形.∵∠DAG=30°,DE=AE,设DG=x,∴∠AED=30°,AD=x,∠DEG=∠DGE=60°.∴DE=DF=x,sin∠ADE=.∵∠EDF=90°,∴EF=x.∴==.∵∠ADE=30°,∴sin∠ADE=.(3)过点E作EG⊥AD于点G,设AE=x,则DE=nx.∵∠CAB=a,∴AG=cosα•x,EG=sinα•x.∴DG==•x.∴AD=cosα•x+•x.∵∠EDF=90°,DE=DF,∴EF=DE=nx.∴==,sin∠ADE===.【点睛】本题考查了等腰三角形的性质和等边三角形的判定,作辅助线构造直角三角形,根据锐角三角函数的定义求解.11.(1)阅读理解:我国是最早了解勾股定理的国家之一,它被记载于我国古代的数学著作《周髀算经》中.汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.根据“赵爽弦图”写出勾股定理和推理过程;(2)问题解决:勾股定理的证明方法有很多,如图②是古代的一种证明方法:过正方形的中心,作,将它分成4份.所分成的四部分和以为边的正方形恰好能拼成以为边的正方形.若,求的值;(3)拓展探究:如图③,以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到“勾股树”的部分图形.设大正方形的边长为定值,小正方形的边长分别为.已知,当角变化时,探究与的关系式,并写出该关系式及解答过程(与的关系式用含的式子表示).解析:(1)见详解;(2)EF=或;(3)c+b=n,理由见详解【分析】(1)根据大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和,即可得到结论;(2)设EF=a,FD=b,由图形的特征可知:a+b=12,a-b=±5,进而即可求解;(3)设正方形E的边长为e,正方形F的边长为f,由相似三角形的性质可知:,结合勾股定理,可得,进而即可求解.【详解】(1)证明:∵在图①中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和.∴c2=ab×4+(b−a)2,化简得:a2+b2=c2;(2)由题意得:正方形ACDE被分成4个全等的四边形,设EF=a,FD=b,∴a+b=12,∵正方形ABIJ是由正方形ACDE被分成的4个全等的四边形和正方形CBLM拼成,∴,,,当EF>DF时,∵,∴a-b=5,∴,解得:a=,∴EF=;同理,当EF<DF时,EF=故EF=或(3)设正方形E的边长为e,正方形F的边长为f,∵,∴图中①与②与③,三个直角三角形相似,∴,即:,∵图形③是直角三角形,∴,∴,即:c+b=n,【点睛】本题主要考查勾股定理及其证明过程,相似三角形的判定和性质,找准图形中线段长和面积的数量关系,是解题的关键.12.如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D,E分别是边BC,AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当时,;②当时,(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情况给出证明.(3)问题解决当△EDC旋转至A、D、E三点共线时,直接写出线段BD的长.解析:(1)①,②.(2)无变化;理由参见解析.(3),.【分析】(1)①当α=0°时,在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根据点D、E分别是边BC、AC的中点,分别求出AE、BD的大小,即可求出的值是多少.②α=180°时,可得AB∥DE,然后根据,求出的值是多少即可.(2)首先判断出∠ECA=∠DCB,再根据,判断出△ECA∽△DCB,即可求出的值是多少,进而判断出的大小没有变化即可.(3)根据题意,分两种情况:①点A,D,E所在的直线和BC平行时;②点A,D,E所在的直线和BC相交时;然后分类讨论,求出线段BD的长各是多少即可.【详解】(1)①当α=0°时,∵Rt△ABC中,∠B=90°,∴AC=,∵点D、E分别是边BC、AC的中点,∴,BD=8÷2=4,∴.②如图1,,当α=180°时,可得AB∥DE,∵,∴(2)如图2,,当0°≤α<360°时,的大小没有变化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵,∴△ECA∽△DCB,∴.(3)①如图3,,∵AC=4,CD=4,CD⊥AD,∴AD=∵AD=BC,AB=DC,∠B=90°,∴四边形ABCD是矩形,∴BD=AC=.②如图4,连接BD,过点D作AC的垂线交AC于点Q,过点B作AC的垂线交AC于点P,,∵AC=,CD=4,CD⊥AD,∴AD=,∵点D、E分别是边BC、AC的中点,∴DE==2,∴AE=AD-DE=8-2=6,由(2),可得,∴BD=.综上所述,BD的长为或.13.(1)方法选择如图①,四边形是的内接四边形,连接,,.求证:.小颖认为可用截长法证明:在上截取,连接…小军认为可用补短法证明:延长至点,使得…请你选择一种方法证明.(2)类比探究(探究1)如图②,四边形是的内接四边形,连接,,是的直径,.试用等式表示线段,,之间的数量关系,并证明你的结论.(探究2)如图③,四边形是的内接四边形,连接,.若是的直径,,则线段,,之间的等量关系式是______.(3)拓展猜想如图④,四边形是的内接四边形,连接,.若是的直径,,则线段,,之间的等量关系式是______.解析:(1)方法选择:证明见解析;(2)【探究1】:;【探究2】;(3)拓展猜想:.【分析】(1)方法选择:根据等边三角形的性质得到∠ACB=∠ABC=60°,如图①,在BD上截取DM=AD,连接AM,由圆周角定理得到∠ADB=∠ACB=60°,得到AM=AD,根据全等三角形的性质得到BM=CD,于是得到结论;(2)类比探究:如图②,由BC是⊙O的直径,得到∠BAC=90°,根据等腰直角三角形的性质得到∠ABC=∠ACB=45°,过A作AM⊥AD交BD于M,推出△ADM是等腰直角三角形,求得DM=AD根据全等三角形的性质得到结论;【探究2】如图③,根据圆周角定理和三角形的内角和得到∠BAC=90°,∠ACB=60°,过A作AM⊥AD交BD于M,求得∠AMD=30°,根据直角三角形的性质得到MD=2AD,根据相似三角形的性质得到BM=CD,于是得到结论;(3)如图④,由BC是⊙O的直径,得到∠BAC=90°,过A作AM⊥AD交BD于M,求得∠MAD=90°,根据相似三角形的性质得到BM=CD,DM=AD,于是得到结论.【详解】(1)方法选择:∵,∴,如图①,在上截取,连接,∵,∴是等边三角形,∴,∵,∵,∴,∴,∴;(2)类比探究:如图②,∵是的直径,∴,∵,∴,过作交于,∵,∴是等腰直角三角形,∴,,∴,∴,∵,∴,∴,∴;[探究2]如图③,∵若是的直径,,∴,,过作交于,∵,∴,∴,∵,,∴,∴,∴,∴;故答案为;(3)拓展猜想:;理由:如图④,∵若是的直径,∴,过作交于,∴,∴,∴,∴,∴,∵,,∴,∴,∴,∴.故答案为.【点睛】本题考查了圆周角定理,圆内接四边形的性质,相似三角形的判定和性质,等腰直角三角形的性质,等边三角形的性质,正确的作出辅助线是解题的关键.14.(1)(探究发现)如图1,的顶点在正方形两条对角线的交点处,,将绕点旋转,旋转过程中,的两边分别与正方形的边和交于点和点(点与点,不重合).则之间满足的数量关系是.(2)(类比应用)如图2,若将(1)中的“正方形”改为“的菱形”,其他条件不变,当时,上述结论是否仍然成立?若成立,请给出证明;若不成立,请猜想结论并说明理由.(3)(拓展延伸)如图3,,,,平分,,且,点是上一点,,求的长.解析:(1)(2)结论不成立.(3)【分析】(1)结论:.根据正方形性质,证,根据全等三角形性质可得结论;(2)结论不成立..连接,在上截取,连接.根据菱形性质,证,四点共圆,分别证是等边三角形,是等边三角形,根据等边三角形性质证,根据全等三角形性质可得结论;(3)由可知是钝角三角形,,作于,设.根据勾股定理,可得到,由,得四点共圆,再证是等边三角形,由(2)可知:,故可得.【详解】(1)如图1中,结论:.理由如下:∵四边形是正方形,∴,,,∵,∴,∴,∴,∴.故答案为.(2)如图2中,结论不成立..理由:连接,在上截取,连接.∵四边形是菱形,,∴,∵,∴四点共圆,∴,∵,∴是等边三角形,∴,,∵,,∴是等边三角形,∴,,∴,∴,∴,∴,(3)如图3中,由可知是钝角三角形,,作于,设.在中,,∵,∴,解得(舍弃)或,∴,∵,∴四点共圆,∵平分,∴,∴,∵,∴是等边三角形,由(2)可知:,∴.【点睛】考核知识点:正方形性质,全等三角形判定和性质,等边三角形判定和性质,圆的性质.综合运用各个几何性质定理是关键;此题比较综合.15.性质探究如图①,在等腰三角形中,,则底边与腰的长度之比为________.理解运用⑴若顶角为120°的等腰三角形的周长为,则它的面积为________;⑵如图②,在四边形中,.①求证:;②在边上分别取中点,连接.若,,直接写出线段的长.类比拓展顶角为的等腰三角形的底边与一腰的长度之比为________(用含的式子表示).解析:性质探究:;理解运用:(1);(2)①见解析;②;类比拓展:.【分析】性质探究:作CD⊥AB于D,则∠ADC=∠BDC=90°,由等腰三角形的性质得出AD=BD,∠A=∠B=30°,由直角三角形的性质得出AC=2CD,AD=CD,得出AB=2AD=2CD,即可得出结果;理解运用:(1)同上得出则AC=2CD,AD=CD,由等腰三角形的周长得出4CD+2CD=8+4,解得:CD=2,得出AB=4,由三角形面积公式即可得出结果;(2)①由等腰三角形的性质得出∠EFG=∠EGF,∠EGH=∠EHG,得出∠EFG+∠EHG=∠EGF+∠EGH=∠FGH即可;②连接FH,作EP⊥FH于P,由等腰三角形的性质得出PF=PH,由①得:∠EFG+∠EHG=∠FGH=120°,由四边形内角和定理求出∠FEH=120°,由等腰三角形的性质得出∠EFH=30°,由直角三角形的性质得出PE=EF=5,PF=PE=5,得出FH=2PF=10,证明MN是△FGH的中位线,由三角形中位线定理即可得出结果;类比拓展:作AD⊥BC于D,由等腰三角形的性质得出BD=CD,∠BAD=∠BAC=α,由三角函数得出BD=AB×sinα,得出BC=2BD=2AB×sinα,即可得出结果.【详解】性质探究解:作CD⊥AB于D,如图①所示:则∠ADC=∠BDC=90°,∵AC=BC,∠ACB=120°,∴AD=BD,∠A=∠B=30°,∴AC=2CD,AD=CD,∴AB=2AD=2CD,∴=;故答案为;理解运用(1)解:如图①所示:同上得:AC=2CD,AD=CD,∵AC+BC+AB=8+4,∴4CD+2CD=8+4,解得:CD=2,∴AB=4,∴△ABC的面积=AB×CD=×4×2=4;故答案为4(2)①证明:∵EF=EG=EH,∴∠EFG=∠EGF,∠EGH=∠EHG,∴∠EFG+∠EHG=∠EGF+∠EGH=∠FGH;②解:连接FH,作EP⊥FH于P,如图②所示:则PF=PH,由①得:∠EFG+∠EHG=∠FGH=120°,∴∠FEH=360°-120°-120°=120°,∵EF=EH,∴∠EFH=30°,∴PE=EF=5,∴PF=PE=5,∴FH=2PF=10,∵点M、N分别是FG、GH的中点,∴MN是△FGH的中位线,∴MN=FH=5;类比拓展解:如图③所示:作AD⊥BC于D,∵AB=AC,∴BD=CD,∠BAD=∠BAC=α,∵sinα=,∴BD=AB×sinα,∴BC=2BD=2AB×sinα,∴=2sinα;故答案为2sinα.【点睛】本题是四边形综合题目,考查了等腰三角形的性质、直角三角形的性质、三角形中位线定理、四边形内角和定理、就直角三角形等知识;本题综合性强,熟练掌握等腰三角形的性质和含30°角的直角三角形的性质是解题的关键.16.如图,四边形是正方形,点为对角线的中点.(1)问题解决:如图①,连接,分别取,的中点,,连接,则与的数量关系是_____,位置关系是____;(2)问题探究:如图②,是将图①中的绕点按顺时针方向旋转得到的三角形,连接,点,分别为,的中点,连接,.判断的形状,并证明你的结论;(3)拓展延伸:如图③,是将图①中的绕点按逆时针方向旋转得到的三角形,连接,点,分别为,的中点,连接,.若正方形的边长为1,求的面积.解析:(1),;(2)的形状是等腰直角三角形,理由见解析;(3)【分析】(1)根据题意可得PQ为△BOC的中位线,再根据中位线的性质即可求解;(2)连接并延长交于点,根据题意证出,为等腰直角三角形,也为等腰直角三角形,由且可得是等腰直角三角形;(3)延长交边于点,连接,.证出四边形是矩形,为等腰直角三角形,,再证出为等腰直角三角形,根据图形的性质和勾股定理求出O′A,O′B和BQ的长度,即可计算出的面积.【详解】解:(1)∵点P和点Q分别为,的中点,∴PQ为△BOC的中位线,∵四边形是正方形,∴AC⊥BO,∴,;故答案为:,;(2)的形状是等腰直角三角形.理由如下:连接并延长交于点,由正方形的性质及旋转可得,∠,是等腰直角三角形,,.∴,.又∵点是的中点,∴.∴.∴,.∴,∴.∴为等腰直角三角形.∴,.∴也为等腰直角三角形.又∵点为的中点,∴,且.∴的形状是等腰直角三角形.(3)延长交边于点,连接,.∵四边形是正方形,是对角线,∴.由旋转得,四边形是矩形,∴,.∴为等腰直角三角形.∵点是的中点,∴,,.∴.∴,.∴.∴.∴为等腰直角三角形.∵是的中点,∴,.∵,∴,,∴.∴.【点睛】本题考查正方形的性质、等腰直角三角形的判定与性质、旋转图形的性质、三角形中位线定理、全等三角形的判定与性质和勾股定理,根据题意作出辅助线构造全等三角形是解题的关键.17.(1)(阅读与证明)如图1,在正的外角内引射线,作点C关于的对称点E(点E在内),连接,、分别交于点F、G.①完成证明:点E是点C关于的对称点,,,.正中,,,,得.在中,,______.在中,,______.②求证:.(2)(类比与探究)把(1)中的“正”改为“正方形”,其余条件不变,如图2.类比探究,可得:①______;②线段、、之间存在数量关系___________.(3)(归纳与拓展)如图3,点A在射线上,,,在内引射线,作点C关于的对称点E(点E在内),连接,、分别交于点F、G.则线段、、之间的数量关系为__________.解析:(1)①60°,30°;②证明见解析;(2)①45°;②BF=(AF+FG);(3).【分析】(1)①根据等量代换和直角三角形的性质即可确定答案;②在FB上取AN=AF,连接AN.先证明△AFN是等边三角形,得到∠BAN=∠2=∠1,然后再证明△ABN≌△AEF,然后利用全等三角形的性质以及线段的和差即可证明;(2)类比(1)的方法即可作答;(3)根据(1)(2)的结论,即可总结出答案.【详解】解:(1)①∵,,∴,即60°;∵∴故答案为60°,30°;②在FB上取FN=AF,连接AN∵∠AFN=∠EFG=60°∴△AFN是等边三角形∴AF=FN=AN∵FN=AF∴∠BAC=∠NAF=60°∴∠BAN+∠NAC=∠NAC+∠2∴∠BAN=∠2∵点C关于的对称点E∴∠2=∠1,AC=AE∴∠BAN=∠2=∠1∵AB=AC∴AB=AE在△ABN和△AEFFN=AF,∠BAN=∠1,AB=AE∴△ABN≌△AEF∴BN=EF∵AG⊥CE,∠FEG=30°∴EF=2FG∴BN=EF=2FG∵BF=BN+NF∴BF=2FG+AF(2)①点E是点C关于的对称点,,,.正方形ABCD中,,,,得.在中,,45.在中,,45.故答案为45°;②在FB上取FN=AF,连接AN∵∠AFN=∠EFG=45°∴△AFN是等腰直角三角形∴∠NAF=90°,AF=AN∴∠BAN+∠NAC=∠NAC+∠2=90°,FN=AF∴∠BAN=∠2∵点C关于的对称点E∴∠2=∠1,AC=AE∴∠BAN=∠2=∠1∵AB=AC∴AB=AE在△ABN和△AEFFN=AF,∠BAN=∠1,AB=AE∴△ABN≌△AEF∴BN=EF∵AG⊥CE,∠FEG=45°∴EF=FG∴BN=EF=FG∵BF=BN+NF∴BF=FG+AF(3)由(1)得:当∠BAC=60°时BF=AF+2FG=;由(2)得:当∠BAC=90°时BF=AF+2FG=;以此类推,当当∠BAC=60°时,.【点睛】本题考查了轴对称的性质、全等三角形的判定与性质、等腰三角形的判定与性质、等边三角形的判定与性质以及三角函数的应用,灵活应用所学知识是解答本题的关键.18.在中,,.点D在边上,且,交边于点F,连接.(1)特例发现:如图1,当时,①求证:;②推断:_________.;(2)探究证明:如图2,当时,请探究的度数是否为定值,并说明理由;(3)拓展运用:如图3,在(2)的条件下,当时,过点D作的垂线,交于点P,交于点K,若,求的长.解析:(1)①证明见解析,②;(2)为定值,证明见解析;(3)【分析】(1)①利用已知条件证明即可得到结论,②先证明利用相似三角形的性质再证明结合相似三角形的性质可得答案;(2)由(1)中②的解题思路可得结论;(3)设则利用等腰直角三角形的性质分别表示:由表示再证明利用相似三角形的性质建立方程求解,即可得到答案.【详解】证明:(1)①②推断:理由如下:(2)为定值,理由如下:由(1)得:(3),设则,解得:【点睛】本题考查的是三角形的全等的判定与性质,等腰直角三角形的性质,三角形相似的判定与性质,更重要的是考查学生的学习探究的能力,掌握以上知识是解题的关键.19.实际问题:某商场为鼓励消费,设计了投资活动.方案如下:根据不同的消费金额,每次抽奖时可以从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取2张、3张、4张、…等若干张奖券,奖券的面值金额之和即为优惠金额.某顾客获得了一次抽取5张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额?问题建模:从1,2,3,…,(为整数,且)这个整数中任取个整数,这个整数之和共有多少种不同的结果?模型探究:我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法.探究一:(1)从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表①所取的2个整数1,21,3,2,32个整数之和345如表①,所取的2个整数之和可以为3,4,5,也就是从3到5的连续整数,其中最小是3,最大是5,所以共有3种不同的结果.(2)从1,2,3,4这4个整数中任取2个整数,这2个整数之和共有多少种不同的结果?表②所取的2个整数1,21,3,1,42,32,43,42个整数之和345567如表②,所取的2个整数之和可以为3,4,5,6,7,也就是从3到7的连续整数,其中最小是3,最大是7,所以共有5种不同的结果.(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和共有______种不同的结果.(4)从1,2,3,…,(为整数,且)这个整数中任取2个整数,这2个整数之和共有______种不同的结果.探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有______种不同的结果.(2)从1,2,3,…,(为整数,且)这个整数中任取3个整数,这3个整数之和共有______种不同的结果.探究三:从1,2,3,…,(为整数,且)这个整数中任取4个整数,这4个整数之和共有______种不同的结果.归纳结论:从1,2,3,…,(为整数,且)这个整数中任取个整数,这个整数之和共有______种不同的结果.问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,共有______种不同的优惠金额.拓展延伸:(1)从1,2,3,…,36这36个整数中任取多少个整数,使得取出的这些整数之和共有204种不同的结果?(写出解答过程)(2)从3,4,5,…,(为整数,且)这个整数中任取个整数,这个整数之和共有______种不同的结果.解析:探究一:(3);(4)(,为整数);探究二:(1)(2);探究三:归纳结论:(为整数,且,<<);问题解决:;拓展延伸:(1)个或个;(2).【分析】探究一:(3)根据(1)(2)的提示列表,可得答案;(4)仔细观察(1)(2)(3)的结果,归纳出规律,从而可得答案;探究二:(1)仿探究一的方法列表可得答案;(2)由前面的探究概括出规律即可得到答案;探究三:根据探究一,探究二,归纳出从1,2,3,…,(为整数,且)这个整数中任取4个整数的和的结果数,再根据上面探究归纳出从1,2,3,…,(为整数,且)这个整数中任取个整数,这个整数之和的结果数;问题解决:利用前

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论