版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
宁夏银川市第六中学2026届高二上数学期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,的导函数,的图象如图所示,则的极值情况为()A.2个极大值,1个极小值 B.1个极大值,1个极小值C.1个极大值,2个极小值 D.1个极大值,无极小值2.在一次抛硬币的试验中,某同学用一枚质地均匀的硬币做了100次试验,发现正面朝上出现了48次,那么出现正面朝上的频率和概率分别为()A.0.48,0.48 B.0.5,0.5C.0.48,0.5 D.0.5,0.483.散点图上有5组数据:据收集到的数据可知,由最小二乘法求得回归直线方程为,则的值为()A.54.2 B.87.64C.271 D.438.24.在棱长为2的正方体中,是棱上一动点,点是面的中心,则的值为()A.4 B.C.2 D.不确定5.如图,过抛物线y2=2px(p>0)的焦点F的直线l交抛物线于点A,B,交其准线于点C,若|BC|=2|BF|,且|AF|=3,则此抛物线的方程为()A.y2=9x B.y2=6xC.y2=3x D.y2=x6.直线分别与轴,轴交于A,B两点,点在圆上,则面积的取值范围是()A B.C. D.7.由小到大排列的一组数据:,其中每个数据都小于,另一组数据2、的中位数可以表示为()A. B.C. D.8.已知空间向量,,且,则的值为()A. B.C. D.9.若,,,则a,b,c与1的大小关系是()A. B.C. D.10.已知的周长等于10,,通过建立适当的平面直角坐标系,顶点的轨迹方程可以是()A. B.C. D.11.已知点、为椭圆的左、右焦点,若点为椭圆上一动点,则使得的点的个数为()A. B.C. D.不能确定12.已知是定义在上的函数,且对任意都有,若函数的图象关于点对称,且,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知是首项为,公差为1的等差数列,数列满足,若对任意的,都有成立,则实数的取值范围是________14.将连续的正整数填入n行n列的方阵中,使得每行、每列、每条对角线上的数之和相等,可得到n阶幻方.记n阶幻方每条对角线上的数之和为,如图:,那么的值为___________.15.已知O为坐标原点,椭圆T:,过椭圆上一点P的两条直线PA,PB分别与椭圆交于A,B,设PA,PB的中点分别为D,E,直线PA,PB的斜率分别是,,若直线OD,OE的斜率之和为2,则的最大值为_______16.不等式的解集为,则________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)大学生王蕾利用暑假参加社会实践,对机械销售公司月份至月份销售某种机械配件的销售量及销售单价进行了调查,销售单价和销售量之间的一组数据如表所示:月份销售单价(元)销售量(件)(1)根据至月份数据,求出关于的回归直线方程;(2)若剩下的月份的数据为检验数据,并规定由回归直线方程得到的估计数据与检验数据的误差不超过元,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?(注:,,参考数据:,)18.(12分)如图,是底面边长为1的正三棱锥,分别为棱上的点,截面底面,且棱台与棱锥的棱长和相等.(棱长和是指多面体中所有棱的长度之和)(1)求证:为正四面体;(2)若,求二面角的大小;(3)设棱台的体积为,是否存在体积为且各棱长均相等的直四棱柱,使得它与棱台有相同的棱长和?若存在,请具体构造出这样的一个直四棱柱,并给出证明;若不存在,请说明理由.19.(12分)圆经过两点,且圆心在直线上.(1)求圆的方程;(2)求圆与圆的公共弦的长.20.(12分)等差数列的前项和记为,已知.(1)求的通项公式:(2)求,并求为何值时的值最大.21.(12分)已知定点,圆:,点Q为圆上动点,线段MQ的垂直平分线交NQ于点P,记P的轨迹为曲线C(1)求曲线C的方程;(2)过点M与N作平行直线和,分别交曲线C于点A,B和点D,E,求四边形ABDE面积的最大值22.(10分)已知数列的前n项和为,且(1)求证:数列为等比数列;(2)记,求数列的前n项和为
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据图象判断的正负,再根据极值的定义分析判断即可【详解】由,得,令,由图可知的三个根即为与的交点的横坐标,当时,,当时,,即,所以为的极大值点,为的极大值,当时,,即,所以为的极小值点,为的极小值,故选:B2、C【解析】频率跟实验次数有关,概率是一种现象的固有属性,与实验次数无关,即可得到答案.【详解】频率跟实验次数有关,出现正面朝上的频率为实验中出现正面朝上的次数除以总试验次数,故为.概率是抛硬币试验的固有属性,与实验次数无关,抛硬币正面朝上的概率为.故选:C3、C【解析】通过样本中心点来求得正确答案.【详解】,故,则,故.故选:C4、A【解析】画出图形,建立空间直角坐标系,用向量法求解即可【详解】如图,以为原点建立如图所示的空间直角坐标系,因为正方体棱长为2,点是面的中心,是棱上一动点,所以,,,故选:A5、C【解析】过点A,B分别作准线的垂线,交准线于点E,D,设|BF|=a,利用抛物线的定义和平行线的性质、直角三角形求解【详解】如图,过点A,B分别作准线的垂线,交准线于点E,D,设|BF|=a,则由已知得|BC|=2a,由抛物线定义得|BD|=a,故∠BCD=30°,在直角三角形ACE中,因为|AE|=|AF|=3,|AC|=3+3a,2|AE|=|AC|,所以3+3a=6,从而得a=1,|FC|=3a=3,所以p=|FG|=|FC|=,因此抛物线的方程为y2=3x,故选:C.6、A【解析】把求面积转化为求底边和底边上的高,高就是圆上点到直线的距离.【详解】与x,y轴的交点,分别为,,点在圆,即上,所以,圆心到直线距离为,所以面积的最小值为,最大值为.故选:A7、C【解析】先根据题意对数据进行排列,然后由中位数的定义求解即可【详解】因为由小到大排列的一组数据:,其中每个数据都小于,所以另一组数据2、从小到大的排列为,所以这一组数的中位数为,故选:C8、B【解析】根据向量垂直得,即可求出的值.【详解】.故选:B.9、C【解析】根据条件构造函数,并求其导数,判断该函数的单调性,据此作出该函数的大致图象,由图象可判断a,b,c与1的大小关系.【详解】令,则当时,,当时,即函数在上单调递减,在上单调递增,而,由可知,故作出函数大致图象如图:由图象易知,,故选:C.10、A【解析】根据椭圆的定义进行求解即可.【详解】因为的周长等于10,,所以,因此点的轨迹是以为焦点的椭圆,且不在直线上,因此有,所以顶点的轨迹方程可以是,故选:A11、B【解析】利用余弦定理结合椭圆的定义可求得、,即可得出结论.【详解】在椭圆中,,,,则,,可得,所以,,解得,此时点位于椭圆短轴的顶点.因此,满足条件的点的个数为.故选:B.12、D【解析】令,代入可得,即得,再由函数的图象关于点对称,判断得函数的图象关于点对称,即,则化简可得,即函数的周期为,从而代入求解.【详解】令,得,即,所以,因为函数的图象关于点对称,所以函数的图象关于点对称,即,所以,即,可得,则,故选:D.第II卷(非选择题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先求得,再得出,对于任意的,都有成立,说明是中的最小项【详解】由题意,∴,易知函数在和上都是减函数,且时,,即,时,,,由题意对于任意的,都有成立,则是最小项,∴,解得,故答案为:14、34【解析】根据每行数字之和相等,四行数字之和刚好等于1到16之和可得.【详解】4阶幻方中,4行数字之和,得.故答案为:3415、【解析】设的坐标,用点差法求和与的关系同,与的关系,然后表示出,求得最大值【详解】设,,,则,两式相减得,∴,,则,同理,,又,∴,,当且仅当,即时等号成立,∴,故答案为:【点睛】方法点睛:本题考查直线与椭圆相交问题,考查椭圆弦中点问题.椭圆中涉及到弦的中点时,常常用点差法确定关系,即设弦端点为,弦中点为,把两点坐标代入椭圆方程,相减后可得16、【解析】由一元二次方程与一元二次不等式之间的关系可知,方程的两根是,所以因此.考点:一元二次方程与一元二次不等式之间的关系.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)回归直线方程是理想的【解析】(1)根据表格数据求得,利用最小二乘法可求得回归直线方程;(2)令回归直线中的可求得估计数据,对比检验数据即可确定结论.小问1详解】由表格数据可知:,,,则,关于的回归直线方程为;【小问2详解】令回归直线中的,则,,(1)中所得到的回归直线方程是理想的.18、(1)证明见解析;(2);(3)存在,构造棱长均为,底面相邻两边的夹角为的直四棱柱即满足条件.【解析】(1)由棱台、棱锥的棱长和相等可得,再由面面平行有,结合正四面体的结构特征即可证结论.(2)取BC的中点M,连接PM、DM、AM,由线面垂直的判定可证平面PAM,即是二面角的平面角,进而求其大小.(3)设直四棱柱的棱长均为,底面相邻两边的夹角为,结合已知条件用表示出即可确定直四棱柱.【小问1详解】由棱台与棱锥的棱长和相等,∴,故.又截面底面ABC,则,,∴,从而,故为正四面体.【小问2详解】取BC的中点M,连接PM、DM、AM,由,,得:平面PAM,而平面PAM,故,从而是二面角的平面角.由(1)知,三棱锥的各棱长均为1,所以.由D是PA的中点,得.在Rt△ADM中,,故二面角的大小为.【小问3详解】存在满足条件的直四棱柱.棱台的棱长和为定值6,体积为V.设直四棱柱的棱长均为,底面相邻两边的夹角为,则该四棱柱的棱长和为6,体积为.因为正四面体的体积是,所以,,从而,故构造棱长均为,底面相邻两边的夹角为的直四棱柱,即满足条件.19、(1)(2)【解析】(1)设圆的方程为,代入所过的点后可求,从而可求圆的方程.(2)利用两圆的方程可求公共弦的方程,利用垂径定理可求公共弦的弦长.【小问1详解】设圆的方程为,,,所以圆的方程为;【小问2详解】由圆的方程和圆的方程可得公共弦的方程为:,整理得到:,到公共弦距离为,故公共弦的弦长为:.20、(1);(2)当或时,的值最大.【解析】(1)根据等差数列前项和公式,结合等差数列的通项公式进行求解即可;(2)根据等差数列的性质进行求解即可.【小问1详解】设等差数列的公差为,因为,所以有,即;【小问2详解】由(1)可知,所以该数列是递减数列,而,当时,解得:,因此当或时,的值最大.21、(1)(2)6【解析】(1)由椭圆的定义求解(2)设直线方程后与椭圆方程联立,由韦达定理表示弦长,将面积转化为函数后求求解【小问1详解】由题意可得,所以动点P的轨迹是以M,N为焦点,长轴长为4的椭圆,即曲线C的方程为:;【小问2详解】由题意可设的方程为,联立方程得,设,,则由根与系数关系有,所以,根据椭圆的对称
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国际商务管理试题及答案
- 2026 年中职景区服务与管理(景区服务基础)试题及答案
- 办公楼租赁终止合同协议2025年
- 办公家具采购合同协议(人体工学)2025
- 多模态同源数据分析框架
- 2025年河北省公需课学习-定制式医疗器械监督管理规定
- 2025年预防艾滋病知识竞赛试题及答案
- 体育游戏舞龙真题及答案
- 道路交通安全(第2版)课件汇 李锐 1-1:道路交通安全课程导入 -5-2:交通环境影响下交通安全分析
- 惠州小学综合科试卷及答案
- 2024年中华人民共和国企业所得税年度纳税申报表(带公式)20240301更新
- 馒头项目投资计划书
- 《跟上兔子》绘本四年级第1季Home-Is-Best教学课件
- 2023年融资租赁风控主管年度总结及下一年展望
- DLT817-2014 立式水轮发电机检修技术规程
- 数学课程设计与实施
- 人工智能在机械制造中的应用
- 福建永定红花岗岩(矿区)介绍
- 第5章-隧道通风-《通风工程(第2版)》教学课件
- 《妇产科学》学习指导及习题集及答案
- 陕西省地方电力公司及各供电分局联系电话(常用版)
评论
0/150
提交评论