山东省枣庄现代实验学校2026届数学高一上期末统考模拟试题含解析_第1页
山东省枣庄现代实验学校2026届数学高一上期末统考模拟试题含解析_第2页
山东省枣庄现代实验学校2026届数学高一上期末统考模拟试题含解析_第3页
山东省枣庄现代实验学校2026届数学高一上期末统考模拟试题含解析_第4页
山东省枣庄现代实验学校2026届数学高一上期末统考模拟试题含解析_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省枣庄现代实验学校2026届数学高一上期末统考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一条侧棱垂直于底面的三棱锥P﹣ABC的三视图不可能是()A.直角三角形B.等边三角形C.菱形D.顶角是90°的等腰三角形2.直线l过点,且与以为端点的线段相交,则直线l的斜率的取值范围是()A. B.C. D.3.设,,则()A.且 B.且C.且 D.且4.在下列各图中,每个图的两个变量具有线性相关关系的图是A.(1)(2) B.(1)(3)C.(2)(4) D.(2)(3)5.若,则的大小关系是()A. B.C. D.6.在平面直角坐标系中,大小为的角始边与轴非负半轴重合,顶点与原点O重合,其终边与圆心在原点,半径为3的圆相交于一点P,点Q坐标为,则的面积为()A. B.C. D.27.函数()的零点所在的一个区间是()A. B.C. D.8.函数的定义域是A. B.C. D.9.指数函数在R上单调递减,则实数a的取值范围是()A. B.C. D.10.集合的真子集的个数是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数,且)的图象恒过定点,则点的坐标为___________;若点在函数的图象上,其中,,则的最大值为___________.12.设,为单位向量.且、的夹角为,若=+3,=2,则向量在方向上的射影为________.13.密位广泛用于航海和军事,我国采用“密位制”是6000密位制,即将一个圆圈分成6000等份,每一个等份是一个密位,那么600密位等于___________rad.14.已知圆(x-1)2+(y+2)2=6与直线2x+y-5=0的位置关系是__.(请填写:相切、相交、相离)15.______16.已知两点,,以线段为直径的圆经过原点,则该圆的标准方程为____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,(1)求的值;(2)求的值.18.已知函数​​(1)试判断函数的奇偶性;(2)求函数的值域.19.已知的一条内角平分线的方程为,其中,(1)求顶点的坐标;(2)求的面积20.已知函数是奇函数(1)求a的值,并根据定义证明函数在上单调递增;(2)求的值域21.已知函数f(x)=4cos(Ⅰ)求f(x)的最小正周期:(Ⅱ)求f(x)在区间-π6

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】直接利用空间图形和三视图之间的转换的应用求出结果【详解】由于三棱锥P﹣ABC的一条侧棱垂直于底面,所以无论怎样摆放,该三视图都为三角形,不可能为菱形故选:C【点睛】本题考查三视图和几何体之间的转换,主要考查学生的空间想象能力,属于基础题2、D【解析】作出图形,并将直线l绕着点M进行旋转,使其与线段PQ相交,进而得到l斜率的取值范围.【详解】∵直线l过点,且与以,为端点的线段相交,如图所示:∴所求直线l的斜率k满足或,,则或,∴,故选:D3、B【解析】容易得出,,即得出,,从而得出,【详解】,.又,即,,,故选B.【点睛】本题考查对数函数单调性的应用,求解时注意总结规律,即对数的底数和真数同时大于1或同时大于0小于1,函数值大于0;若一个大于1,另一个大于0小于1,函数值小于04、D【解析】由线性相关的定义可知:(2)中两变量线性正相关,(3)中两变量线性负相关,故选:D考点:变量线性相关问题5、C【解析】利用指数函数与对数函数的单调性,把各数与中间值0,1比较即得【详解】利用指数函数的单调性知:,即;利用指数函数的单调性知:,即;利用对数函数的单调性知:,即;所以故选:C6、B【解析】根据题意可得、,结合三角形的面积公式计算即可.【详解】由题意知,,,所以.故选:B7、C【解析】将各区间的端点值代入计算并结合零点存在性定理判断即可.【详解】由,,,所以,根据零点存在性定理可知函数在该区间存在零点.故选:C8、B【解析】根据根式、对数及分母有意义的原则,即可求得x的取值范围【详解】要使函数有意义,则需,解得,据此可得:函数的定义域为.故选B.【点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.本题求解时要注意根号在分母上,所以需要,而不是.9、D【解析】由已知条件结合指数函数的性质列不等式求解即可【详解】因为指数函数在R上单调递减,所以,得,所以实数a的取值范围是,故选:D10、B【解析】确定集合的元素个数,利用集合真子集个数公式可求得结果.【详解】集合的元素个数为,故集合的真子集个数为.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、①②.##0.5【解析】根据对数函数图象恒过定点求出点A坐标;代入一次函数式,借助均值不等式求解作答.【详解】函数,且)中,由得:,则点;依题意,,而,,则,当且仅当2m=n=1时取“=”,即,所以点的坐标为,的最大值为.故答案为:;12、【解析】考点:该题主要考查平面向量的概念、数量积的性质等基础知识,考查数学能力.13、【解析】根据周角为,结合新定义计算即可【详解】解:∵圆周角为,∴1密位,∴600密位,故答案为:14、相交【解析】求得的圆心到直线的距离,与圆的半径比较大小,即可得出结论.【详解】圆的圆心为、半径为,圆心到直线的距离为,小于半径,所以直线和圆相交,故答案为相交.【点睛】本题主要考查直线和圆的位置关系的判断方法,点到直线的距离公式的应用,属于基础题.解答直线与圆的位置关系的题型,常见思路有两个:一是考虑圆心到直线的距离与半径之间的大小关系;二是直线方程与圆的方程联立,考虑运用判别式来解答.15、【解析】由指数和对数运算法则直接计算即可.【详解】.故答案为:.16、【解析】由以线段为直径的圆经过原点,则可得,求得参数的值,然后由中点坐标公式求所求圆的圆心,用两点距离公式求所求圆的直径,再运算即可.【详解】解:由题意有,,又以线段为直径的圆经过原点,则,则,解得,即,则的中点坐标为,即为,又,即该圆的标准方程为,故答案为.【点睛】本题考查了圆的性质及以两定点为直径的圆的方程的求法,重点考查了运算能力,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)化简得到原式,代入数据得到答案.(2)变换得到,代入数据得到答案.【详解】(1).(2).【点睛】本题考查了利用齐次式计算函数值,变换是解题的关键.18、(1)奇函数;(2).【解析】化简函数f(x)=log3(2-sinx)-log3(2+sinx)(1)利用函数的奇偶性的定义直接求解即可;(2)把分子分离常数,根据-1≤sinx≤1,求出函数的值域【详解】(1),的定义域为,则对中的任意都有,所以为上的奇函数;(2)令,,,

,,,

即值域为.【点睛】本题考查对数的运算性质,函数奇偶性的判断,对数函数的值域与最值,考查计算能力,属于中档题.19、(1)点的坐标为.(2)24【解析】(1)先根据中点坐标公式以及直线垂直斜率的积等于列方程组求出点关于直线的对称点的坐标,根据两点式或点斜式可得直线的方程,与角平分线的方程联立可得顶点的坐标;(2)根据两点间的距离公式可得的值,再利用点到直线距离公式可得到直线:的距离,由三角形面积公式可得结果.试题解析:(1)由题意可得,点关于直线的对称点在直线上,则有解得,,即,由和,得直线的方程为,由得顶点的坐标为(2),到直线:的距离,故的面积为20、(1),证明见解析;(2).【解析】(1)由列方程求参数a,令判断的大小关系即可证结论;(2)根据指数复合函数值域的求法,求的值域.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论