浙江省学军中学2026届高二上数学期末监测模拟试题含解析_第1页
浙江省学军中学2026届高二上数学期末监测模拟试题含解析_第2页
浙江省学军中学2026届高二上数学期末监测模拟试题含解析_第3页
浙江省学军中学2026届高二上数学期末监测模拟试题含解析_第4页
浙江省学军中学2026届高二上数学期末监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省学军中学2026届高二上数学期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线平分圆C:,则最小值为()A.3 B.C. D.2.某汽车制造厂分别从A,B两类轮胎中各随机抽取了6个进行测试,下面列出了每一个轮胎行驶的最远里程(单位:)A类轮胎:94,96,99,99,105,107B类轮胎:95,95,98,99,104,109根据以上数据,下列说法正确的是()A.A类轮胎行驶的最远里程的众数小于B类轮胎行驶的最远里程的众数B.A类轮胎行驶的最远里程的极差等于B类轮胎行驶的最远里程的极差C.A类轮胎行驶的最远里程的平均数大于B类轮胎行驶的最远里程的平均数D.A类轮胎的性能更加稳定3.为了了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为50的样本,则分段的间隔为()A.20 B.25C.40 D.504.已知关于x的不等式的解集为空集,则的最小值为()A. B.2C. D.45.南宋数学家杨辉所著的《详解九章算法》中有如下俯视图所示的几何体,后人称之为“三角垛”.其最上层有1个球,第二层有3个球,第三层有6个球,…,则第十层球的个数为()A.45 B.55C.90 D.1106.直线x-y+1=0被椭圆+y2=1所截得的弦长|AB|等于()A. B.C. D.7.双曲线的焦距是()A.4 B.C.8 D.8.已知p、q是两个命题,若“(¬p)∨q”是假命题,则()A.p、q都是假命题 B.p、q都是真命题C.p是假命题q是真命题 D.p是真命题q是假命题9.记等差数列的前n项和为,若,,则等于()A.5 B.31C.38 D.4110.已知直线经过点,且是的方向向量,则点到的距离为()A. B.C. D.11.已知双曲线的离心率为2,则C的渐近线方程为()A. B.C. D.12.已知椭圆的左、右焦点分别是,焦距,过点的直线与椭圆交于两点,若,且,则椭圆C的方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.写出直线一个方向向量______14.已知,则曲线在点处的切线方程是______.15.若某几何体的三视图如图所示,则该几何体的体积是__________16.已知双曲线的左、右焦点分别为,双曲线左支上点满足,则的面积为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆关于直线对称,且圆心C在轴上.(1)求圆C的方程;(2)直线与圆C交于A、B两点,若为等腰直角三角形,求直线的方程.18.(12分)已知数列{}满足a1=1,a3+a7=18,且(n≥2)(1)求数列{}的通项公式;(2)若=·,求数列的前n项和19.(12分)一个长方体的平面展开图及该长方体的直观图的示意图如图所示(1)请将字母F,G,H标记在长方体相应的顶点处(不需说明理由):(2)若且有下面两个条件:①;②,请选择其中一个条件,使得DF⊥平面,并证明你的结论20.(12分)已知圆的方程为(1)求圆的圆心及半径;(2)是否存在直线满足:经过点,且_________________?如果存在,求出直线的方程;如果不存在,请说明理由从下列三个条件中任选一个补充在上面问题中并作答:条件①:被圆所截得的弦长最长;条件②:被圆所截得的弦长最短;条件③:被圆所截得的弦长为注:如果选择多个条件分别作答,按第一个解答计分21.(12分)的内角A,B,C的对边分别为a,b,c.已知.(1)求B(2)___________,若问题中的三角形存在,试求出;若问题中的三角形不存在,请说明理由.在①,②,③这三个条件中任选一个,补充在横线上.注:如果选择多个条件分别解答,按第一个解答计分.22.(10分)已知圆与x轴交于A,B两点,P是该圆上任意一点,AP,PB的延长线分别交直线于M,N两点.(1)若弦AP长为2,求直线PB的方程;(2)以线段MN为直径作圆C,当圆C面积最小时,求此时圆C的方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据直线过圆心求得,再利用基本不等式求和的最小值即可.【详解】根据题意,直线过点,即,则,当且仅当,即时取得最小值.故选:D.2、D【解析】根据众数、极差、平均数和方差的定义以及计算公式即可求解.【详解】解:对A:A类轮胎行驶的最远里程的众数为99,B类轮胎行驶的最远里程的众数为95,选项A错误;对B:A类轮胎行驶的最远里程的极差为13,B类轮胎行驶的最远里程的极差为14,选项B错误对C:A类轮胎行驶的最远里程的平均数为,B类轮胎行驶的最远里程的平均数为,选项C错误对D:A类轮胎行驶的最远里程的方差为,B类轮胎行驶的最远里程的方差为,故A类轮胎的性能更加稳定,选项D正确故选:D.3、A【解析】根据系统抽样定义可求得结果【详解】分段的间隔为故选:A4、D【解析】根据一元二次不等式的解集的情况得出二次项系数大于零,根的判别式小于零,可得出,再将化为,由和均值不等式可求得最小值.【详解】由题意可得:,,可以得到,而,可以令,则有,当且仅当取等号,所以的最小值为4.故答案为:4.【点睛】本题主要考查均值不等式,关键在于由一元二次不等式的解集的情况得出的关系,再将所求的式子运用不等式的性质降低元的个数,运用均值不等式,是中档题.5、B【解析】根据题意,发现规律并将规律表达出来,第层有个球.【详解】根据规律,可以得知:第一层有个球;第二层有个球;第三层有个球,则根据规律可知:第层有个球设第层的小球个数为,则有:故第十层球的个数为:故选:6、A【解析】联立方程组,求出交点坐标,利用两点间的距离公式求距离.【详解】由得交点为(0,1),,则|AB|==.故选:A.7、C【解析】根据,先求半焦距,再求焦距即可.【详解】解:由题意可得,,∴,故选:C【点睛】考查求双曲线的焦距,基础题.8、D【解析】由已知可得¬p,q都是假命题,从而可分析判断各选项【详解】∵“(¬p)∨q”是假命题,∴¬p,q都是假命题,∴p真,q假,故选:D.9、A【解析】设等差数列的公差为d,首先根据题意得到,再解方程组即可得到答案.【详解】解:设等差数列的公差为d,由题知:,解得.故选:A.10、B【解析】求出,根据点到直线的距离的向量公式进行求解.【详解】因为,为的一个方向向量,所以点到直线的距离.故选:B11、A【解析】根据离心率及a,b,c的关系,可求得,代入即可得答案.【详解】因为离心率,所以,所以,,则,所以C的渐近线方程为.故选:A12、A【解析】画出图形,利用已知条件,推出,延长交椭圆于点,得到直角和直角,设,则,根据椭圆的定义转化求解,即可求得椭圆的方程.【详解】如图所示,,则,延长交椭圆于点,可得直角和直角,设,则,根据椭圆的定义,可得,在直角中,,解得,又在中,,代入可得,所以,所以椭圆的方程为.故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】本题可先将直线的一般式化为斜截式,然后根据斜率即可得到直线的一个方向向量.【详解】由题意可知,直线可以化为,所以直线的斜率为,直线的一个方向向量可以写为.故答案为:.14、【解析】求导,得到,写出切线方程.【详解】因为,所以,则,所以曲线在点处的切线方程是,即,故答案为:15、1【解析】根据三视图可得如图所示的几何体,从而可求其体积.【详解】据三视图分析知,该几何体为直三棱柱,且底面为直角边为1的等腰直角三角形,高为2,所以其体积故答案为:116、3【解析】由双曲线方程可得,利用双曲线定义,以及直角三角形的勾股定理可得,由此求得答案.【详解】由双曲线的左、右焦点分别为,双曲线左支上点满足,可得:,则,且,故,所以,故,故答案为:3三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】(1)根据题意得到等量关系,求出,,进而求出圆的方程;(2)结合第一问求出的圆心和半径,及题干条件得到圆心到直线的距离为,列出方程,求出的值,进而得到直线方程【小问1详解】由题意得:直线过圆心,即,且,解得:,,所以圆C的方程为;【小问2详解】的圆心为,半径为2,由题意得:,圆心到直线的距离为,即,解得:或,所以直线的方程为:或.18、(1);(2)【解析】(1)由等差中项可知数列是等差数列,根据已知可求得其公差,从而可得其通项公式;(2)分析可知应用错位相减法求数列的和【详解】(1)由知,数列是等差数列,设其公差为,则,所以,,即数列的通项公式为(2),,,两式相减得:,整理得:,所以19、(1)答案见解析(2)答案见解析【解析】(1)由展开图及直观图直接观察可得;(2)选择②,根据线面垂直的判定定理即可证明DF⊥平面.【小问1详解】如图,【小问2详解】若选择①,若此时有平面,则由平面可得,而平面,而平面,故,因为,则平面,由平面可得,故此时矩形为正方形,,矛盾.选择条件②,使得平面,下面证明如图,连接,在长方体中,平面,而平面,故,而,故矩形为正方形,故,而,故平面,而平面,故,同理,又,所以平面.20、(1)圆心为,半径为;(2)答案见解析.【解析】(1)写出圆标准方程即得解;(2)选择条件①:直线应过圆心即直线过点和,即得解;选择条件②:直线应与垂直,求出直线的方程即得解;选择条件③:不存在满足条件的直线.【小问1详解】解:由圆的方程整理可得,所以圆心为,半径为.小问2详解】选择条件①:若直线被圆所截得的弦长最长,则直线应过圆心即直线过点和,所以直线的斜率为,则直线的方程为.选择条件②:若直线过点被圆所截得的弦长最短,则直线应与垂直.又,所以.故直线方程为.选择条件③:经过点的直线被圆所截得的最短弦长,由于,所以不存在满足条件的直线.21、(1)(2)答案见解析【解析】(1)由正弦定理及正弦的两角和公式可求解;(2)选择条件①,由正弦定理及辅助角公式可求解;选择条件②,由余弦定理及正切三角函数可求解;选择条件③,由余弦定理可求解.【小问1详解】由,可得,则.∴,在中,,则,∵,∴,∴,∵,∴.【小问2详解】选择条件①,在中,,可得,∵,∴,∴,根据辅助角公式,可得,∵,∴,即,故选择条件②由,得,∵,∴,因此,,整理得,即,则.在中,,∴.故.选择条件③由,得,即,整理得,由于,则方程无解,故不存在这样的三角形.22、(1)或;(2).【解析】(1)根据圆的直径的性质,结合锐角三角函数定义进行求解即可;(2)根据题意,结合基本不等式和圆的标准方程进行求解即可.【小问1详解】在方程中,令,解得,或,因为AP,PB的延长线分别交直线于M,N两点,所以,圆心在x轴上,所以,因为,,所以有,当P在x轴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论