云南省怒江市2026届高二上数学期末达标检测试题含解析_第1页
云南省怒江市2026届高二上数学期末达标检测试题含解析_第2页
云南省怒江市2026届高二上数学期末达标检测试题含解析_第3页
云南省怒江市2026届高二上数学期末达标检测试题含解析_第4页
云南省怒江市2026届高二上数学期末达标检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省怒江市2026届高二上数学期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列满足,则()A.2 B.C.1 D.2.抛物线的焦点为F,点为该抛物线上的动点,点A是抛物线的准线与坐标轴的交点,则的最大值是()A.2 B.C. D.3.等比数列中,,则()A. B.C.2 D.44.“杨辉三角”是中国古代重要的数学成就,它比西方的“帕斯卡三角形”早了多年,如图是由“杨辉三角”拓展而成的三角形数阵,记为图中虚线上的数,,,,…构成的数列的第项,则的值为()A. B.C. D.5.命题“存在,使得”为真命题的一个充分不必要条件是()A. B.C. D.6.在的展开式中,的系数为()A. B.5C. D.107.命题,,则是()A., B.,C., D.,8.等比数列的第4项与第6项分别为12和48,则公比的值为()A. B.2C.或2 D.或9.经过点,且被圆所截得的弦最短时的直线的方程为()A. B.C. D.10.直线l的方向向量为,且l过点,则点到l的距离为()A B.C. D.11.在空间直角坐标系中,点关于轴的对称点为点,则点到直线的距离为()A. B.C. D.612.已知抛物线的焦点为F,过点F作倾斜角为的直线l与抛物线交于两点,则POQ(O为坐标原点)的面积S等于()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线方程为,则其焦点坐标为__________14.的展开式中的系数为_________15.复数的共轭复数是__________16.已知,求_____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,长轴长为,F为椭圆的右焦点(1)求椭圆C的方程;(2)经过点的直线与椭圆C交于两点,,且以为直径的圆经过原点,求直线的斜率;(3)点是以长轴为直径的圆上一点,圆在点处的切线交直线于点,求证:过点且垂直于的直线过定点18.(12分)已知抛物线y2=8x.(1)求出该抛物线的顶点、焦点、准线、对称轴、变量x的范围;(2)以坐标原点O为顶点,作抛物线的内接等腰三角形OAB,|OA|=|OB|,若焦点F是△OAB的重心,求△OAB的周长19.(12分)已知椭圆经过点,(1)求椭圆的方程;(2)已知直线的倾斜角为锐角,与圆相切,与椭圆交于、两点,且的面积为,求直线的方程20.(12分)已知抛物线,过焦点的直线l交抛物线C于M、N两点,且线段中点的纵坐标为2(1)求直线l的方程;(2)设x轴上关于y轴对称的两点P、Q,(其中P在Q的右侧),过P的任意一条直线交抛物线C于A、B两点,求证:始终被x轴平分21.(12分)已知函数.(1)求函数在处的切线方程;(2)设为的导数,若方程的两根为,且,当时,不等式对任意的恒成立,求正实数的最小值.22.(10分)若函数在区间上的最大值为9,最小值为1.(1)求a,b的值;(2)若方程在上有两个不同的解,求实数k的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】首先得到数列的周期,再计算的值.【详解】由条件,可知,两式相加可得,即,所以数列是以周期为的周期数列,.故选:D2、B【解析】设直线的倾斜角为,设垂直于准线于,由抛物线的性质可得,则,当直线PA与抛物线相切时,最小,取得最大值,设出直线方程得到直线和抛物线相切时的点P的坐标,然后进行计算得到结果.【详解】设直线的倾斜角为,设垂直于准线于,由抛物线的性质可得,所以则,当最小时,则值最大,所以当直线PA与抛物线相切时,θ最大,即最小,由题意可得,设切线PA的方程为:,,整理可得,,可得,将代入,可得,所以,即P的横坐标为1,即P的坐标,所以,,所以的最大值为:,故选:B【点睛】关键点睛:本题主要考查了抛物线的简单性质.解题的关键是利用了抛物线的定义.一般和抛物线有关的小题,很多时可以应用结论来处理的;平时练习时应多注意抛物线的结论的总结和应用.尤其和焦半径联系的题目,一般都和定义有关,实现点点距和点线距的转化3、D【解析】利用等比数列的下标特点,即可得到结果.【详解】∵,∴,∴,∴.故选:D4、B【解析】根据杨辉三角可得数列的递推公式,结合累加法可得数列的通项公式与.【详解】由已知可得数列的递推公式为,且,且,故,,,,,等式左右两边分别相加得,,故选:B.5、B【解析】“存在,使得”为真命题,可得,利用二次函数的单调性即可得出.再利用充要条件的判定方法即可得出.【详解】解:因为“存在,使得”为真命题,所以,因此上述命题得个充分不必要条件是.故选:B.【点睛】本题考查了二次函数的单调性、充要条件的判定方法,考查了推理能力与计算能力,属于中档题.6、C【解析】首先写出展开式的通项公式,然后结合通项公式确定的系数即可.【详解】展开式的通项公式为:,令可得:,则的系数为:.故选:C.【点睛】二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项7、D【解析】根据特称命题的否定为全称命题,即可得到答案.【详解】因为命题,,所以,.故选:D8、C【解析】根据等比数列的通项公式计算可得;详解】解:依题意、,所以,即,所以;故选:C9、C【解析】当是弦中点,她能时,弦长最短.由此可得直线斜率,得直线方程【详解】根据题意,圆心为,当与直线垂直时,点被圆所截得的弦最短,此时,则直线的斜率,则直线的方程为,变形可得,故选:C.【点睛】本题考查直线与圆相交弦长问题,掌握垂径定理是求解圆弦长问题的关键10、C【解析】利用向量投影和勾股定理即可计算.【详解】∵,∴又,∴在方向上的投影,∴P到l距离故选:C.11、C【解析】按照空间中点到直线的距离公式直接求解.【详解】由题意,,,的方向向量,,则点到直线的距离为.故选:C.12、A【解析】由抛物线的方程可得焦点的坐标,由题意设直线的方程,与抛物线的方程,联立求出两根之和及两根之积,进而求出,的纵坐标之差的绝对值,代入三角形的面积公式求出面积【详解】抛物线的焦点为,,由题意可得直线的方程为,设,,,,联立,整理可得:,则,,所以,所以,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先将抛物线的方程转化为标准方程的形式,即可判断抛物线的焦点坐标为,从而解得答案.【详解】解:因为抛物线方程为,即,所以,,所以抛物线的焦点坐标为,故答案为:.14、4【解析】将代数式变形为,写出展开式的通项,令的指数为,求得参数的值,代入通项即可求解.【详解】由展开式的通项为,令,得展开式中的系数为.由展开式的通项为,令,得展开式中的系数为.所以的展开式中的系数为.故答案为:.15、【解析】利用复数除法化简,由共轭复数的概念写出即可.【详解】,∴.故答案为:16、【解析】根据导数的定义即可求解.【详解】,所以,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解析】(1)由题意中离心率和长轴长可求出,即可求出椭圆方程.(2)设出与的坐标即直线的方程,把直线与椭圆方程进行联立写出韦达定理,由题意以为直径圆经过原点可得,化简即可求出直线的斜率.(3)由题意可得圆的方程,设,由和直线的方程化简,即可得到答案.【小问1详解】,,椭圆C的方程为.【小问2详解】由题意知直线的斜率存在且不为0,设直线的方程为.设.把直线的方程与椭圆的方程进行联立得:..由以为直径圆经过原点知,..经检验,满足,所以.【小问3详解】由题意可得圆的方程为,设,由得.①.当时,,直线的方程为.直线过椭圆的右焦点.当时,直线的斜率为且过,②把①代入②中得.故直线过椭圆的右焦点.综上所述,直线过椭圆的右焦点.18、(1)见解析;(2)2+4.【解析】(1)由抛物线的简单几何性质易得结果;(2)由|OA|=|OB|可知AB⊥x轴,又焦点F是△OAB的重心,则|OF|=|OM|=2.设A(3,m),代入y2=8x即可得到△OAB的周长【详解】(1)抛物线y2=8x的顶点、焦点、准线、对称轴、变量x的范围分别为(0,0),(2,0),x=-2,x轴,x≥0.(2)如图所示.由|OA|=|OB|可知AB⊥x轴,垂足为点M,又焦点F是△OAB的重心,则|OF|=|OM|.因为F(2,0),所以|OM|=|OF|=3.所以M(3,0).故设A(3,m),代入y2=8x得m2=24.所以m=2或m=-2.所以A(3,2),B(3,-2)所以|OA|=|OB|=.所以△OAB的周长为2+4.【点睛】本题考查了抛物线简单性质的应用,解题关键利用好三角形重心的性质,属于中档题.19、(1)(2)【解析】(1)将点M、N的坐标代入椭圆方程计算,求出a、b的值即可;(2)设l的方程为:,,根据直线与圆的位置关系可得,直线方程联立椭圆方程并消去y,利用韦达定理表示出,根据弦长公式求出,进而列出关于k的方程,解之即可.【小问1详解】椭圆经过点,则,解得,【小问2详解】设l的方程为:与圆相切设点,∴(则Δ>0,,,,,,,,,故,20、(1);(2)证明见解析.【解析】(1)设直线l的方程为:,联立方程,利用韦达定理可得结果;(2)设,借助韦达定理表示,即可得到结果.【详解】(1)由已知可设直线l的方程为:,联立方程组可得,设,则又因为,得,故直线l的方程为:即为;(2)由题意可设,可设过P的直线为联立方程组可得,显然设,则所以所以始终被x轴平分21、(1)(2)1【解析】(1)先求导数,根据导数的几何意义可求得切线方程;(2)将已知方程结合其两根,进行变式,求得,利用该式再将不等式变形,然后将不等式的恒成立问题变为函数的最值问题求解.【小问1详解】由题意可得,所以切点为,则切线方程为:.【小问2详解】由题意有:,则,因为分别是方程的两个根,即.两式相减,则,则不等式,可变为,两边同时除以得,,令,则在上恒成立.整理可得,在上恒成立,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论